These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1159 related articles for article (PubMed ID: 29573085)

  • 21. Quantitative vs. semiquantitative assessment of intratumoral susceptibility signals in patients with different grades of glioma.
    Bhattacharjee R; Gupta RK; Patir R; Vaishya S; Ahlawat S; Singh A
    J Magn Reson Imaging; 2020 Jan; 51(1):225-233. PubMed ID: 31087724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T.
    Citak-Er F; Firat Z; Kovanlikaya I; Ture U; Ozturk-Isik E
    Comput Biol Med; 2018 Aug; 99():154-160. PubMed ID: 29933126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas.
    Skogen K; Schulz A; Dormagen JB; Ganeshan B; Helseth E; Server A
    Eur J Radiol; 2016 Apr; 85(4):824-9. PubMed ID: 26971430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diagnostic accuracy of MRI texture analysis for grading gliomas.
    Ditmer A; Zhang B; Shujaat T; Pavlina A; Luibrand N; Gaskill-Shipley M; Vagal A
    J Neurooncol; 2018 Dec; 140(3):583-589. PubMed ID: 30145731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting histological grade in pediatric glioma using multiparametric radiomics and conventional MRI features.
    Zhou T; Qiao B; Peng B; Liu Y; Gong Z; Kang M; He Y; Pang C; Dai Y; Sheng M
    Sci Rep; 2024 Jun; 14(1):13683. PubMed ID: 38871755
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach.
    Yuan J; Siakallis L; Li HB; Brandner S; Zhang J; Li C; Mancini L; Bisdas S
    BMC Med Imaging; 2024 May; 24(1):104. PubMed ID: 38702613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis.
    Nakamoto T; Takahashi W; Haga A; Takahashi S; Kiryu S; Nawa K; Ohta T; Ozaki S; Nozawa Y; Tanaka S; Mukasa A; Nakagawa K
    Sci Rep; 2019 Dec; 9(1):19411. PubMed ID: 31857632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intergrating conventional MRI, texture analysis of dynamic contrast-enhanced MRI, and susceptibility weighted imaging for glioma grading.
    Su CQ; Lu SS; Han QY; Zhou MD; Hong XN
    Acta Radiol; 2019 Jun; 60(6):777-787. PubMed ID: 30244590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas.
    Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F
    Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining MRI and Histologic Imaging Features for Predicting Overall Survival in Patients with Glioma.
    Rathore S; Chaddad A; Iftikhar MA; Bilello M; Abdulkadir A
    Radiol Imaging Cancer; 2021 Jul; 3(4):e200108. PubMed ID: 34296969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas.
    Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS
    World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas.
    Raja R; Sinha N; Saini J; Mahadevan A; Rao KN; Swaminathan A
    Neuroradiology; 2016 Dec; 58(12):1217-1231. PubMed ID: 27796448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Grading of Glioma: combined diagnostic value of amide proton transfer weighted, arterial spin labeling and diffusion weighted magnetic resonance imaging.
    Kang XW; Xi YB; Liu TT; Wang N; Zhu YQ; Wang XR; Guo F
    BMC Med Imaging; 2020 May; 20(1):50. PubMed ID: 32408867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning.
    Ubaldi L; Saponaro S; Giuliano A; Talamonti C; Retico A
    Phys Med; 2023 Mar; 107():102538. PubMed ID: 36796177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of active and infiltrative tumorous subregions from normal tissue in brain gliomas using multiparametric MRI.
    Fathi Kazerooni A; Nabil M; Zeinali Zadeh M; Firouznia K; Azmoudeh-Ardalan F; Frangi AF; Davatzikos C; Saligheh Rad H
    J Magn Reson Imaging; 2018 Oct; 48(4):938-950. PubMed ID: 29412496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soft Tissue Sarcomas: Preoperative Predictive Histopathological Grading Based on Radiomics of MRI.
    Zhang Y; Zhu Y; Shi X; Tao J; Cui J; Dai Y; Zheng M; Wang S
    Acad Radiol; 2019 Sep; 26(9):1262-1268. PubMed ID: 30377057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diffusion-weighted imaging and arterial spin labeling radiomics features may improve differentiation between radiation-induced brain injury and glioma recurrence.
    Zhang J; Wu Y; Wang Y; Zhang X; Lei Y; Zhu G; Mao C; Zhang L; Ma L
    Eur Radiol; 2023 May; 33(5):3332-3342. PubMed ID: 36576544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images.
    Sengupta A; Agarwal S; Gupta PK; Ahlawat S; Patir R; Gupta RK; Singh A
    Eur J Radiol; 2018 Sep; 106():199-208. PubMed ID: 30150045
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status.
    Sudre CH; Panovska-Griffiths J; Sanverdi E; Brandner S; Katsaros VK; Stranjalis G; Pizzini FB; Ghimenton C; Surlan-Popovic K; Avsenik J; Spampinato MV; Nigro M; Chatterjee AR; Attye A; Grand S; Krainik A; Anzalone N; Conte GM; Romeo V; Ugga L; Elefante A; Ciceri EF; Guadagno E; Kapsalaki E; Roettger D; Gonzalez J; Boutelier T; Cardoso MJ; Bisdas S
    BMC Med Inform Decis Mak; 2020 Jul; 20(1):149. PubMed ID: 32631306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 58.