These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29573283)

  • 1. Thermal Conductivity of Polymers and Their Nanocomposites.
    Xu X; Chen J; Zhou J; Li B
    Adv Mater; 2018 Apr; 30(17):e1705544. PubMed ID: 29573283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally enhanced polyolefin composites: fundamentals, progress, challenges, and prospects.
    Chaudhry AU; Mabrouk AN; Abdala A
    Sci Technol Adv Mater; 2020 Nov; 21(1):737-766. PubMed ID: 33192179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multiscale Investigation on the Thermal Transport in Polydimethylsiloxane Nanocomposites: Graphene vs. Borophene.
    Di Pierro A; Mortazavi B; Noori H; Rabczuk T; Fina A
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34064564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of Graphene-Related Materials Controlling the Thermal Conductivity of Their Polymer Nanocomposites.
    Colonna S; Battegazzore D; Eleuteri M; Arrigo R; Fina A
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33143017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.
    Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA
    ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore-Confined Polymers Enhance the Thermal Conductivity of Polymer Nanocomposites.
    Ma H; Lionti K; Magbitang TP; Gaskins J; Hopkins PE; Huxtable ST; Tian Z
    ACS Macro Lett; 2022 Jan; 11(1):116-120. PubMed ID: 35574791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in the development of thermal interface materials: a review.
    Zhang Y; Ma J; Wei N; Yang J; Pei QX
    Phys Chem Chem Phys; 2021 Jan; 23(2):753-776. PubMed ID: 33427250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal conductivity analysis and applications of nanocellulose materials.
    Uetani K; Hatori K
    Sci Technol Adv Mater; 2017; 18(1):877-892. PubMed ID: 29152020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Alignment on Enhancement of Thermal Conductivity of Polyethylene-Graphene Nanocomposites and Comparison with Effective Medium Theory.
    Tarannum F; Muthaiah R; Annam RS; Gu T; Garg J
    Nanomaterials (Basel); 2020 Jun; 10(7):. PubMed ID: 32630082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanothreads enable remarkable enhancement in the thermal conductivity of polyethylene.
    Zhan H; Zhou Y; Zhang G; Zhu J; Zhang W; Lü C; Gu Y
    Nanoscale; 2021 Apr; 13(14):6934-6943. PubMed ID: 33885495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity.
    Zeng X; Sun J; Yao Y; Sun R; Xu JB; Wong CP
    ACS Nano; 2017 May; 11(5):5167-5178. PubMed ID: 28402626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density.
    Marconnet AM; Yamamoto N; Panzer MA; Wardle BL; Goodson KE
    ACS Nano; 2011 Jun; 5(6):4818-25. PubMed ID: 21598962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells.
    Díez-Pascual AM; Luceño Sánchez JA; Peña Capilla R; García Díaz P
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity of carbon nanotube-polyamide-6,6 nanocomposites: reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Müller-Plathe F; Böhm MC
    J Chem Phys; 2011 Nov; 135(18):184905. PubMed ID: 22088079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tropocollagen-Inspired Hierarchical Spiral Structure of Organic Fibers in Epoxy Bulk for 3D High Thermal Conductivity.
    Chen X; Wu K; Zhang Y; Liu D; Li R; Fu Q
    Adv Mater; 2022 Oct; 34(40):e2206088. PubMed ID: 35963011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of thermal interface on heat flow in carbon nanofiber composites.
    Gardea F; Naraghi M; Lagoudas D
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1061-72. PubMed ID: 24344861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper toward High Thermal Conductivity.
    Yao Y; Zeng X; Pan G; Sun J; Hu J; Huang Y; Sun R; Xu JB; Wong CP
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31248-31255. PubMed ID: 27788322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental, Theoretical and Simulation Studies on the Thermal Behavior of PLA-Based Nanocomposites Reinforced with Different Carbonaceous Fillers.
    Spinelli G; Guarini R; Kotsilkova R; Ivanov E; Romano V
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34200476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured polymer films with metal-like thermal conductivity.
    Xu Y; Kraemer D; Song B; Jiang Z; Zhou J; Loomis J; Wang J; Li M; Ghasemi H; Huang X; Li X; Chen G
    Nat Commun; 2019 Apr; 10(1):1771. PubMed ID: 30992436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Thermally Conductive Polyimide Composites via Constructing 3D Networks.
    Ding D; Wang H; Wu Z; Chen Y; Zhang Q
    Macromol Rapid Commun; 2019 Sep; 40(17):e1800805. PubMed ID: 30673150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.