These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29573548)

  • 21. Probing the Li
    Jafta CJ; Bridges CA; Bai Y; Geng L; Thapaliya BP; Meyer HM; Essehli R; Heller WT; Belharouak I
    ChemSusChem; 2020 Jul; 13(14):3654-3661. PubMed ID: 32356937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of High-Energy Li-Ion Cells with Li4 Ti5 O12 Microspheres as Anode and 0.5 Li2 MnO3 ⋅0.5 LiNi0.4 Co0.2 Mn0.4 O2 Microspheres as Cathode.
    Dai C; Ye J; Zhao S; He P; Zhou H
    Chem Asian J; 2016 Apr; 11(8):1273-80. PubMed ID: 26918412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quenching-Induced Defects Liberate the Latent Reversible Capacity of Lithium Titanate Anode.
    Su Z; Li S; Ma L; Liu T; Li M; Wu T; Zhang Q; Dong C; Lai C; Gu L; Lu J; Pan F; Zhang S
    Adv Mater; 2023 Feb; 35(5):e2208573. PubMed ID: 36460018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electron bottleneck in the charge/discharge mechanism of lithium titanates for batteries.
    Ventosa E; Skoumal M; Vazquez FJ; Flox C; Arbiol J; Morante JR
    ChemSusChem; 2015 May; 8(10):1737-44. PubMed ID: 25892099
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Throughput Production of Zr-Doped Li
    Wang B; Gu L; Zhang D; Wang WA
    Chem Asian J; 2019 Sep; 14(18):3181-3187. PubMed ID: 31342621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High Capacitive Storage Performance of Sulfur and Nitrogen Codoped Mesoporous Graphene.
    Ma X; Gao D
    ChemSusChem; 2018 Mar; 11(6):1048-1055. PubMed ID: 29377606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth of hierarchical 3D mesoporous NiSix /NiCo2 O4 core/shell heterostructures on nickel foam for lithium-ion batteries.
    Zhang Q; Chen H; Wang J; Xu D; Li X; Yang Y; Zhang K
    ChemSusChem; 2014 Aug; 7(8):2325-34. PubMed ID: 24828680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solution-Based, Anion-Doping of Li
    Salvatore KL; Lutz DM; Guo H; Yue S; Gan J; Tong X; Liu P; Takeuchi ES; Takeuchi KJ; Marschilok AC; Wong SS
    Chemistry; 2020 Jul; 26(42):9389-9402. PubMed ID: 32583564
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controllable Synthesis of Copper Oxide/Carbon Core/Shell Nanowire Arrays and Their Application for Electrochemical Energy Storage.
    Zhan J; Chen M; Xia X
    Nanomaterials (Basel); 2015 Oct; 5(4):1610-1619. PubMed ID: 28347084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of core-shell α-Fe(2)O(3)@ Li(4)Ti(5)O(12) composite and its application in the lithium ion batteries.
    Chen M; Li W; Shen X; Diao G
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4514-23. PubMed ID: 24598727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Beyond Activated Carbon: Graphite-Cathode-Derived Li-Ion Pseudocapacitors with High Energy and High Power Densities.
    Wang G; Oswald S; Löffler M; Müllen K; Feng X
    Adv Mater; 2019 Apr; 31(14):e1807712. PubMed ID: 30767311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly-Stable Li₄Ti₅O
    Yoon JK; Nam S; Shim HC; Park K; Yoon T; Park HS; Hyun S
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29772650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.
    Ge H; Hao T; Osgood H; Zhang B; Chen L; Cui L; Song XM; Ogoke O; Wu G
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9162-9. PubMed ID: 27015357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries.
    Sun L; Kong W; Wu H; Wu Y; Wang D; Zhao F; Jiang K; Li Q; Wang J; Fan S
    Nanoscale; 2016 Jan; 8(1):617-25. PubMed ID: 26646734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SnO
    Zhang F; Yang C; Gao X; Chen S; Hu Y; Guan H; Ma Y; Zhang J; Zhou H; Qi L
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9620-9629. PubMed ID: 28248075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction of 1T-MoSe
    Zhang Y; Deng S; Shen Y; Liu B; Pan G; Liu Q; Wang X; Wang Y; Xia X; Tu J
    ChemSusChem; 2020 Mar; 13(6):1575-1581. PubMed ID: 31646763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Encapsulation of Fe
    Li Y; Liang T; Wang R; He B; Gong Y; Wang H
    ACS Appl Mater Interfaces; 2019 May; 11(21):19115-19122. PubMed ID: 31062955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ.
    Pang Q; Liang X; Kochetkov IR; Hartmann P; Nazar LF
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9795-9798. PubMed ID: 29947071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery.
    Huang H; Feng T; Gan Y; Fang M; Xia Y; Liang C; Tao X; Zhang W
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11842-8. PubMed ID: 25989321
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage.
    Wang Z; Su F; Madhavi S; Lou XW
    Nanoscale; 2011 Apr; 3(4):1618-23. PubMed ID: 21286653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.