These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 29573606)
1. Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples. Gorden EM; Sturk-Andreaggi K; Marshall C Forensic Sci Int Genet; 2018 May; 34():257-264. PubMed ID: 29573606 [TBL] [Abstract][Full Text] [Related]
2. Performance evaluation of a mitogenome capture and Illumina sequencing protocol using non-probative, case-type skeletal samples: Implications for the use of a positive control in a next-generation sequencing procedure. Marshall C; Sturk-Andreaggi K; Daniels-Higginbotham J; Oliver RS; Barritt-Ross S; McMahon TP Forensic Sci Int Genet; 2017 Nov; 31():198-206. PubMed ID: 29101892 [TBL] [Abstract][Full Text] [Related]
3. Concordance and reproducibility of a next generation mtGenome sequencing method for high-quality samples using the Illumina MiSeq. Peck MA; Brandhagen MD; Marshall C; Diegoli TM; Irwin JA; Sturk-Andreaggi K Forensic Sci Int Genet; 2016 Sep; 24():103-111. PubMed ID: 27368088 [TBL] [Abstract][Full Text] [Related]
4. Target capture enrichment of nuclear SNP markers for massively parallel sequencing of degraded and mixed samples. Bose N; Carlberg K; Sensabaugh G; Erlich H; Calloway C Forensic Sci Int Genet; 2018 May; 34():186-196. PubMed ID: 29524767 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial DNA control region typing from highly degraded skeletal remains by single-multiplex next-generation sequencing. Vinueza-Espinosa DC; Cuesta-Aguirre DR; Malgosa A; Santos C Electrophoresis; 2023 Sep; 44(17-18):1423-1434. PubMed ID: 37379235 [TBL] [Abstract][Full Text] [Related]
6. Massively parallel sequencing of the entire control region and targeted coding region SNPs of degraded mtDNA using a simplified library preparation method. Lee EY; Lee HY; Oh SY; Jung SE; Yang IS; Lee YH; Yang WI; Shin KJ Forensic Sci Int Genet; 2016 May; 22():37-43. PubMed ID: 26844917 [TBL] [Abstract][Full Text] [Related]
7. Validation of NGS for mitochondrial DNA casework at the FBI Laboratory. Brandhagen MD; Just RS; Irwin JA Forensic Sci Int Genet; 2020 Jan; 44():102151. PubMed ID: 31629185 [TBL] [Abstract][Full Text] [Related]
8. Impact of the sequencing method on the detection and interpretation of mitochondrial DNA length heteroplasmy. Sturk-Andreaggi K; Parson W; Allen M; Marshall C Forensic Sci Int Genet; 2020 Jan; 44():102205. PubMed ID: 31783338 [TBL] [Abstract][Full Text] [Related]
9. Development of a control region-based mtDNA SNaPshot™ selection tool, integrated into a mini amplicon sequencing method. Weiler NE; de Vries G; Sijen T Sci Justice; 2016 Mar; 56(2):96-103. PubMed ID: 26976467 [TBL] [Abstract][Full Text] [Related]
10. Massively parallel sequencing of 17 commonly used forensic autosomal STRs and amelogenin with small amplicons. Kim EH; Lee HY; Yang IS; Jung SE; Yang WI; Shin KJ Forensic Sci Int Genet; 2016 May; 22():1-7. PubMed ID: 26799314 [TBL] [Abstract][Full Text] [Related]
11. Human Mitochondrial Control Region and mtGenome: Design and Forensic Validation of NGS Multiplexes, Sequencing and Analytical Software. Holt CL; Stephens KM; Walichiewicz P; Fleming KD; Forouzmand E; Wu SF Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33921728 [TBL] [Abstract][Full Text] [Related]
12. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data. Sturk-Andreaggi K; Peck MA; Boysen C; Dekker P; McMahon TP; Marshall CK Forensic Sci Int Genet; 2017 Nov; 31():189-197. PubMed ID: 29080494 [TBL] [Abstract][Full Text] [Related]
13. Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples. Peck MA; Sturk-Andreaggi K; Thomas JT; Oliver RS; Barritt-Ross S; Marshall C Forensic Sci Int Genet; 2018 May; 34():25-36. PubMed ID: 29413633 [TBL] [Abstract][Full Text] [Related]
14. Usefulness of microchip electrophoresis for the analysis of mitochondrial DNA in forensic and ancient DNA studies. Alonso A; Albarran C; Martín P; García P; Capilla J; García O; de la Rua C; Izaguirre N; Pereira F; Pereira L; Amorim A; Sancho M Electrophoresis; 2006 Dec; 27(24):5101-9. PubMed ID: 17120261 [TBL] [Abstract][Full Text] [Related]
15. Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions. Kim H; Erlich HA; Calloway CD Croat Med J; 2015 Jun; 56(3):208-17. PubMed ID: 26088845 [TBL] [Abstract][Full Text] [Related]
16. PCR-Free Enrichment of Mitochondrial DNA from Human Blood and Cell Lines for High Quality Next-Generation DNA Sequencing. Gould MP; Bosworth CM; McMahon S; Grandhi S; Grimberg BT; LaFramboise T PLoS One; 2015; 10(10):e0139253. PubMed ID: 26488301 [TBL] [Abstract][Full Text] [Related]
17. Cytosine deamination is a major cause of baseline noise in next-generation sequencing. Chen G; Mosier S; Gocke CD; Lin MT; Eshleman JR Mol Diagn Ther; 2014 Oct; 18(5):587-93. PubMed ID: 25091469 [TBL] [Abstract][Full Text] [Related]
18. Applications of Probe Capture Enrichment Next Generation Sequencing for Whole Mitochondrial Genome and 426 Nuclear SNPs for Forensically Challenging Samples. Shih SY; Bose N; Gonçalves ABR; Erlich HA; Calloway CD Genes (Basel); 2018 Jan; 9(1):. PubMed ID: 29361782 [TBL] [Abstract][Full Text] [Related]
19. Capillary electrophoresis of human mtDNA control region sequences from highly degraded samples using short mtDNA amplicons. Loreille OM; Irwin JA Methods Mol Biol; 2012; 830():283-99. PubMed ID: 22139668 [TBL] [Abstract][Full Text] [Related]
20. Damage patterns observed in mtDNA control region MPS data for a range of template concentrations and when using different amplification approaches. Holland CA; McElhoe JA; Gaston-Sanchez S; Holland MM Int J Legal Med; 2021 Jan; 135(1):91-106. PubMed ID: 32940843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]