These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 29573608)
1. Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis. He Y; Chang C; Li P; Han X; Li H; Fang S; Chen J; Ma X Bioresour Technol; 2018 Jul; 259():294-303. PubMed ID: 29573608 [TBL] [Abstract][Full Text] [Related]
2. Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Dhyani V; Kumar J; Bhaskar T Bioresour Technol; 2017 Dec; 245(Pt A):1122-1129. PubMed ID: 28954382 [TBL] [Abstract][Full Text] [Related]
3. Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char. Ma Y; Niu R; Wang X; Wang Q; Wang X; Sun X Waste Manag Res; 2014 Nov; 32(11):1123-33. PubMed ID: 25378256 [TBL] [Abstract][Full Text] [Related]
5. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Kaur R; Gera P; Jha MK; Bhaskar T Bioresour Technol; 2018 Feb; 250():422-428. PubMed ID: 29195154 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of co-pyrolysis of sawdust, coal and tar. Montiano MG; Díaz-Faes E; Barriocanal C Bioresour Technol; 2016 Apr; 205():222-9. PubMed ID: 26829530 [TBL] [Abstract][Full Text] [Related]
7. Research on the co-pyrolysis of coal gangue and coffee industry residue based on machine language: Interaction, kinetics, and thermodynamics. Ni Z; Bi H; Jiang C; Tian J; Sun H; Zhou W; Lin Q Sci Total Environ; 2022 Jan; 804():150217. PubMed ID: 34520910 [TBL] [Abstract][Full Text] [Related]
8. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA. Chen C; Ma X; He Y Bioresour Technol; 2012 Aug; 117():264-73. PubMed ID: 22617036 [TBL] [Abstract][Full Text] [Related]
10. Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis. Boubacar Laougé Z; Merdun H Bioresour Technol; 2020 Mar; 299():122602. PubMed ID: 31869633 [TBL] [Abstract][Full Text] [Related]
11. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal. Wu Z; Wang S; Zhao J; Chen L; Meng H Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297 [TBL] [Abstract][Full Text] [Related]
12. Pyrolytic degradation of peanut shell: Activation energy dependence on the conversion. Torres-García E; Ramírez-Verduzco LF; Aburto J Waste Manag; 2020 Apr; 106():203-212. PubMed ID: 32240937 [TBL] [Abstract][Full Text] [Related]
13. Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods. Yao Z; Yu S; Su W; Wu W; Tang J; Qi W Waste Manag Res; 2020 May; 38(1_suppl):77-85. PubMed ID: 31957598 [TBL] [Abstract][Full Text] [Related]
14. Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA. Azizi K; Keshavarz Moraveji M; Abedini Najafabadi H Bioresour Technol; 2017 Nov; 243():481-491. PubMed ID: 28689141 [TBL] [Abstract][Full Text] [Related]
15. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Mishra RK; Mohanty K Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770 [TBL] [Abstract][Full Text] [Related]
16. Kinetic Study of Copyrolysis of the Green Microalgae Subagyono RRDJN; Masdalifa W; Aminah S; Nugroho RA; Mollah M; Londong Allo V; Gunawan R ACS Omega; 2021 Nov; 6(47):32032-32042. PubMed ID: 34870026 [TBL] [Abstract][Full Text] [Related]
17. Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models. Kumar M; Shukla SK; Upadhyay SN; Mishra PK Bioresour Technol; 2020 Aug; 310():123393. PubMed ID: 32334359 [TBL] [Abstract][Full Text] [Related]
18. Nonisothermal thermogravimetric analysis of Thai lignite with high CaO content. Pintana P; Tippayawong N ScientificWorldJournal; 2013; 2013():216975. PubMed ID: 24250259 [TBL] [Abstract][Full Text] [Related]
19. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst. Loy ACM; Gan DKW; Yusup S; Chin BLF; Lam MK; Shahbaz M; Unrean P; Acda MN; Rianawati E Bioresour Technol; 2018 Aug; 261():213-222. PubMed ID: 29665455 [TBL] [Abstract][Full Text] [Related]
20. Pyrolysis of Musa balbisiana flower petal using thermogravimetric studies. Sriram A; Swaminathan G Bioresour Technol; 2018 Oct; 265():236-246. PubMed ID: 29902656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]