BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29573611)

  • 1. Kinetic analysis of curdlan production by Alcaligenes faecalis with maltose, sucrose, glucose and fructose as carbon sources.
    Zhang Q; Sun J; Wang Z; Hang H; Zhao W; Zhuang Y; Chu J
    Bioresour Technol; 2018 Jul; 259():319-324. PubMed ID: 29573611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of carbon sources on production and properties of curdlan using
    Wan J; Wang Y; Jiang D; Gao H; Yang G; Yang X
    Prep Biochem Biotechnol; 2020; 50(9):857-864. PubMed ID: 32538270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Enhanced production of curdlan by Alcaligenes faecalis by selective feeding with ammonia water during the cell growth phase of fermentation].
    Wu J; Zhan X; Liu H; Zheng Z
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):1035-9. PubMed ID: 18807988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable biosynthesis of curdlan from orange waste by using Alcaligenes faecalis: A systematically modeled approach.
    Mohsin A; Sun J; Khan IM; Hang H; Tariq M; Tian X; Ahmed W; Niazi S; Zhuang Y; Chu J; Mohsin MZ; Salim-Ur-Rehman ; Guo M
    Carbohydr Polym; 2019 Feb; 205():626-635. PubMed ID: 30446148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentative production of curdlan.
    Saudagar PS; Singhal RS
    Appl Biochem Biotechnol; 2004; 118(1-3):21-31. PubMed ID: 15304736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749.
    Jiang L
    Int J Biol Macromol; 2013 Jan; 52():218-20. PubMed ID: 23085490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of pH control on the production of curdlan by Alcaligenes faecalis strain].
    Wang L; Zhan XB; Zhu YH; Li ZY; Yang Y
    Sheng Wu Gong Cheng Xue Bao; 2002 Sep; 18(5):634-7. PubMed ID: 12561215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of nitrogen source NH4 Cl concentration on curdlan production in Alcaligenes faecalis].
    Sun YS; Wang L; Zhan XB; Zheng ZY; Chen YZ
    Sheng Wu Gong Cheng Xue Bao; 2005 Mar; 21(2):328-31. PubMed ID: 16013500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical maximum and observed product yields associated with curdlan production by Alcaligenes faecalis.
    Phillips KR; Lawford HG
    Can J Microbiol; 1983 Oct; 29(10):1270-6. PubMed ID: 6420029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated curdlan production by a mutant of Agrobacterium sp. ATCC 31749.
    West TP
    J Basic Microbiol; 2009 Dec; 49(6):589-92. PubMed ID: 19810049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of curdlan-type polysaccharide by Alcaligenes faecalis in batch and continuous culture.
    Phillips KR; Pik J; Lawford HG; Lavers B; Kligerman A; Lawford GR
    Can J Microbiol; 1983 Oct; 29(10):1331-8. PubMed ID: 6362809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Tween 80 on the production of curdlan by Alcaligenes faecalis ATCC 31749.
    Xia Z
    Carbohydr Polym; 2013 Oct; 98(1):178-80. PubMed ID: 23987333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Special bacterial polysaccharides and polysaccharases.
    Harada T
    Biochem Soc Symp; 1983; 48():97-116. PubMed ID: 6400487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curdlan production from cassava starch hydrolysates by Agrobacterium sp. DH-2.
    Wan J; Shao Z; Jiang D; Gao H; Yang X
    Bioprocess Biosyst Eng; 2022 May; 45(5):969-979. PubMed ID: 35312865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. INDUCED BIOSYNTHESIS OF ALPHA-AMYLASE BY GROWING CULTURES OF BACILLUS STEAROTHERMOPHILUS.
    WELKER NE; CAMPBELL LL
    J Bacteriol; 1963 Dec; 86(6):1196-201. PubMed ID: 14086089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sugars relevant for sourdough fermentation stimulate growth of and bacteriocin production by Lactobacillus amylovorus DCE 471.
    Leroy F; De Winter T; Adriany T; Neysens P; De Vuyst L
    Int J Food Microbiol; 2006 Nov; 112(2):102-11. PubMed ID: 16950530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curdlan production by Agrobacterium sp. ATCC 31749 on an ethanol fermentation coproduct.
    West TP; Nemmers B
    J Basic Microbiol; 2008 Feb; 48(1):65-8. PubMed ID: 18247398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EFFECT OF CARBON SOURCES ON FORMATION OF ALPHA-AMYLASE BY BACILLUS STEAROTHERMOPHILUS.
    WELKER NE; CAMPBELL LL
    J Bacteriol; 1963 Oct; 86(4):681-6. PubMed ID: 14066461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetically modelled approach of xanthan production using different carbon sources: A study on molecular weight and rheological properties of xanthan.
    Mohsin A; Akyliyaevna KA; Zaman WQ; Hussain MH; Mohsin MZ; Al-Rashed S; Tan X; Tian X; Aida K; Tariq M; Haider MS; Khan IM; Niazi S; Zhuang Y; Guo M
    Int J Biol Macromol; 2021 Dec; 193(Pt B):1226-1236. PubMed ID: 34743029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of curdlan from culture media containing 13C-labeled glucose as the carbon source.
    Kai A; Ishino T; Arashida T; Hatanaka K; Akaike T; Matsuzaki K; Kaneko Y; Mimura T
    Carbohydr Res; 1993 Feb; 240():153-9. PubMed ID: 8458009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.