BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 29573792)

  • 1. In situ comparison of A-mode ultrasound tracking system and skin-mounted markers for measuring kinematics of the lower extremity.
    Niu K; Anijs T; Sluiter V; Homminga J; Sprengers A; Marra MA; Verdonschot N
    J Biomech; 2018 Apr; 72():134-143. PubMed ID: 29573792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Method to Track 3D Knee Kinematics by Multi-Channel 3D-Tracked A-Mode Ultrasound.
    Niu K; Sluiter V; Lan B; Homminga J; Sprengers A; Verdonschot N
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical solution to reduce soft tissue artifact error at the knee using adaptive kinematic constraints.
    Potvin BM; Shourijeh MS; Smale KB; Benoit DL
    J Biomech; 2017 Sep; 62():124-131. PubMed ID: 28291516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring relative positions and orientations of the tibia with respect to the femur using one-channel 3D-tracked A-mode ultrasound tracking system: A cadaveric study.
    Niu K; Homminga J; Sluiter V; Sprengers A; Verdonschot N
    Med Eng Phys; 2018 Jul; 57():61-68. PubMed ID: 29759948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Ultrasound-Based Lower Extremity Motion Tracking System.
    Niu K; Sluiter V; Homminga J; Sprengers A; Verdonschot N
    Adv Exp Med Biol; 2018; 1093():131-142. PubMed ID: 30306478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo.
    Benoit DL; Ramsey DK; Lamontagne M; Xu L; Wretenberg P; Renström P
    Gait Posture; 2006 Oct; 24(2):152-64. PubMed ID: 16260140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Marker-Based and Stereo Radiography Knee Kinematics in Activities of Daily Living.
    Hume DR; Kefala V; Harris MD; Shelburne KB
    Ann Biomed Eng; 2018 Nov; 46(11):1806-1815. PubMed ID: 29948373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of a subject-specific moving-axis tibiofemoral joint model using MRI and EOS imaging during a quasi-static lunge.
    Dzialo CM; Pedersen PH; Simonsen CW; Jensen KK; de Zee M; Andersen MS
    J Biomech; 2018 Apr; 72():71-80. PubMed ID: 29567307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft tissue artifact distribution on lower limbs during treadmill gait: Influence of skin markers' location on cluster design.
    Barré A; Jolles BM; Theumann N; Aminian K
    J Biomech; 2015 Jul; 48(10):1965-71. PubMed ID: 25920897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methodological concerns using intra-cortical pins to measure tibiofemoral kinematics.
    Ramsey DK; Wretenberg PF; Benoit DL; Lamontagne M; Németh G
    Knee Surg Sports Traumatol Arthrosc; 2003 Sep; 11(5):344-9. PubMed ID: 12879227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity.
    Akbarshahi M; Schache AG; Fernandez JW; Baker R; Banks S; Pandy MG
    J Biomech; 2010 May; 43(7):1292-301. PubMed ID: 20206357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a multi-body optimization with knee kinematic models including ligament constraints.
    Gasparutto X; Sancisi N; Jacquelin E; Parenti-Castelli V; Dumas R
    J Biomech; 2015 Apr; 48(6):1141-6. PubMed ID: 25655463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic differences between optical motion capture and biplanar videoradiography during a jump-cut maneuver.
    Miranda DL; Rainbow MJ; Crisco JJ; Fleming BC
    J Biomech; 2013 Feb; 46(3):567-73. PubMed ID: 23084785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of three-dimensional model-based tibio-femoral tracking during running.
    Anderst W; Zauel R; Bishop J; Demps E; Tashman S
    Med Eng Phys; 2009 Jan; 31(1):10-6. PubMed ID: 18434230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinate system requirements to determine motions of the tibiofemoral joint free from kinematic crosstalk errors.
    Hull ML
    J Biomech; 2020 Aug; 109():109928. PubMed ID: 32807309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of a contour-based biplane fluoroscopy technique for tracking knee joint kinematics of different speeds.
    Giphart JE; Zirker CA; Myers CA; Pennington WW; LaPrade RF
    J Biomech; 2012 Nov; 45(16):2935-8. PubMed ID: 23021610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of three-dimensional soft tissue artifacts in the canine hindlimb during passive stifle motion.
    Lin CC; Chang CL; Lu M; Lu TW; Wu CH
    BMC Vet Res; 2018 Dec; 14(1):389. PubMed ID: 30522489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EOS orthopaedic imaging system to study patellofemoral kinematics: assessment of uncertainty.
    Azmy C; Guérard S; Bonnet X; Gabrielli F; Skalli W
    Orthop Traumatol Surg Res; 2010 Feb; 96(1):28-36. PubMed ID: 20170853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion of the femoral condyles in flexion and extension during a continuous lunge.
    Feng Y; Tsai TY; Li JS; Wang S; Hu H; Zhang C; Rubash HE; Li G
    J Orthop Res; 2015 Apr; 33(4):591-7. PubMed ID: 25641056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A patient-specific measurement technique to model shoulder joint kinematics.
    Charbonnier C; Chagué S; Kolo FC; Chow JC; Lädermann A
    Orthop Traumatol Surg Res; 2014 Nov; 100(7):715-9. PubMed ID: 25281547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.