These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29573989)

  • 61. The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects.
    Daskalakis ZJ; Möller B; Christensen BK; Fitzgerald PB; Gunraj C; Chen R
    Exp Brain Res; 2006 Oct; 174(3):403-12. PubMed ID: 16683138
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity.
    Ilić TV; Meintzschel F; Cleff U; Ruge D; Kessler KR; Ziemann U
    J Physiol; 2002 Nov; 545(1):153-67. PubMed ID: 12433957
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Short interval intracortical inhibition and facilitation during the silent period in human.
    Ni Z; Gunraj C; Chen R
    J Physiol; 2007 Sep; 583(Pt 3):971-82. PubMed ID: 17656435
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Interactions between two different inhibitory systems in the human motor cortex.
    Sanger TD; Garg RR; Chen R
    J Physiol; 2001 Jan; 530(Pt 2):307-17. PubMed ID: 11208978
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The effect of test TMS intensity on short-interval intracortical inhibition in different excitability states.
    Garry MI; Thomson RH
    Exp Brain Res; 2009 Feb; 193(2):267-74. PubMed ID: 18974984
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex.
    Rosenkranz K; Rothwell JC
    Eur J Neurosci; 2006 Feb; 23(3):822-9. PubMed ID: 16487162
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Influence of short-interval intracortical inhibition on short-interval intracortical facilitation in human primary motor cortex.
    Shirota Y; Hamada M; Terao Y; Matsumoto H; Ohminami S; Furubayashi T; Nakatani-Enomoto S; Ugawa Y; Hanajima R
    J Neurophysiol; 2010 Sep; 104(3):1382-91. PubMed ID: 20505127
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Modulation of motor cortex inhibition during motor imagery.
    Chong BW; Stinear CM
    J Neurophysiol; 2017 Apr; 117(4):1776-1784. PubMed ID: 28123007
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Assessment of cortical inhibition depends on inter individual differences in the excitatory neural populations activated by transcranial magnetic stimulation.
    Cerins A; Corp D; Opie G; Do M; Speranza B; He J; Barhoun P; Fuelscher I; Enticott P; Hyde C
    Sci Rep; 2022 Jun; 12(1):9923. PubMed ID: 35705672
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The minimal number of TMS trials required for the reliable assessment of corticospinal excitability, short interval intracortical inhibition, and intracortical facilitation.
    Biabani M; Farrell M; Zoghi M; Egan G; Jaberzadeh S
    Neurosci Lett; 2018 May; 674():94-100. PubMed ID: 29551425
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cortical inhibition and facilitation are mediated by distinct physiological processes.
    Pavey N; Menon P; van den Bos MAJ; Kiernan MC; Vucic S
    Neurosci Lett; 2023 Apr; 803():137191. PubMed ID: 36924929
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Unravelling the Modulation of Intracortical Inhibition During Motor Imagery: An Adaptive Threshold-Hunting Study.
    Neige C; Rannaud Monany D; Stinear CM; Byblow WD; Papaxanthis C; Lebon F
    Neuroscience; 2020 May; 434():102-110. PubMed ID: 32229235
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The role of GABA(B) receptors in intracortical inhibition in the human motor cortex.
    McDonnell MN; Orekhov Y; Ziemann U
    Exp Brain Res; 2006 Aug; 173(1):86-93. PubMed ID: 16489434
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Novel methods for quantifying neurophysiologic properties of the human lumbar paraspinal muscles.
    Goss DA; Thomas JS; Clark BC
    J Neurosci Methods; 2011 Jan; 194(2):329-35. PubMed ID: 20969893
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dissecting the mechanisms underlying short-interval intracortical inhibition using exercise.
    Vucic S; Cheah BC; Kiernan MC
    Cereb Cortex; 2011 Jul; 21(7):1639-44. PubMed ID: 21071618
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fatigue-induced changes in short-interval intracortical inhibition and the silent period with stimulus intensities evoking maximal versus submaximal responses.
    Brownstein CG; Espeit L; Royer N; Lapole T; Millet GY
    J Appl Physiol (1985); 2020 Aug; 129(2):205-217. PubMed ID: 32584668
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The effect of transcranial magnetic stimulation test intensity on the amplitude, variability and reliability of motor evoked potentials.
    Pellegrini M; Zoghi M; Jaberzadeh S
    Brain Res; 2018 Dec; 1700():190-198. PubMed ID: 30194017
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of peripheral sensory input on cortical inhibition in humans.
    Sailer A; Molnar GF; Cunic DI; Chen R
    J Physiol; 2002 Oct; 544(2):617-29. PubMed ID: 12381831
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Increased facilitation of the primary motor cortex in de novo Parkinson's disease.
    Shirota Y; Ohminami S; Tsutsumi R; Terao Y; Ugawa Y; Tsuji S; Hanajima R
    Parkinsonism Relat Disord; 2019 Sep; 66():125-129. PubMed ID: 31327628
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enhanced intracortical inhibition in cerebellar patients.
    Tamburin S; Fiaschi A; Marani S; Andreoli A; Manganotti P; Zanette G
    J Neurol Sci; 2004 Feb; 217(2):205-10. PubMed ID: 14706225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.