These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 29574192)
1. Comprehensive analysis of differentially expressed genes reveals the molecular response to elevated CO Zhang G; Zhang T; Liu J; Zhang J; He C Gene; 2018 Jun; 660():120-127. PubMed ID: 29574192 [TBL] [Abstract][Full Text] [Related]
2. Fatty acid composition of developing sea buckthorn (Hippophae rhamnoides L.) berry and the transcriptome of the mature seed. Fatima T; Snyder CL; Schroeder WR; Cram D; Datla R; Wishart D; Weselake RJ; Krishna P PLoS One; 2012; 7(4):e34099. PubMed ID: 22558083 [TBL] [Abstract][Full Text] [Related]
3. Transcriptomic analysis of drought stress responses of sea buckthorn (Hippophae rhamnoidessubsp. sinensis) by RNA-Seq. Ye G; Ma Y; Feng Z; Zhang X PLoS One; 2018; 13(8):e0202213. PubMed ID: 30102736 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome and DNA methylome provide insights into the molecular regulation of drought stress in sea buckthorn. Lyu Z; Zhang G; Song Y; Diao S; He C; Zhang J Genomics; 2022 May; 114(3):110345. PubMed ID: 35321848 [TBL] [Abstract][Full Text] [Related]
5. An ABA-flavonoid relationship contributes to the differences in drought resistance between different sea buckthorn subspecies. Gao G; Lv Z; Zhang G; Li J; Zhang J; He C Tree Physiol; 2021 May; 41(5):744-755. PubMed ID: 33184668 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening. Zhang G; Chen D; Zhang T; Duan A; Zhang J; He C DNA Res; 2018 Oct; 25(5):465-476. PubMed ID: 29873696 [TBL] [Abstract][Full Text] [Related]
7. Untargeted metabolic fingerprinting reveals impact of growth stage and location on composition of sea buckthorn (Hippophaë rhamnoides) leaves. Pariyani R; Kortesniemi M; Liimatainen J; Sinkkonen J; Yang B J Food Sci; 2020 Feb; 85(2):364-373. PubMed ID: 31976552 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of circular RNAs during the sea buckthorn fruit development. Zhang G; Diao S; Zhang T; Chen D; He C; Zhang J RNA Biol; 2019 Mar; 16(3):354-361. PubMed ID: 30681395 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide analysis of long non-coding RNAs at the mature stage of sea buckthorn (Hippophae rhamnoides Linn) fruit. Zhang G; Duan A; Zhang J; He C Gene; 2017 Jan; 596():130-136. PubMed ID: 27751814 [TBL] [Abstract][Full Text] [Related]
10. Unique features of the m Zhang G; Lv Z; Diao S; Liu H; Duan A; He C; Zhang J RNA Biol; 2021 Nov; 18(sup2):794-803. PubMed ID: 34806556 [TBL] [Abstract][Full Text] [Related]
11. Characterization and identification of ISSR markers associated with oil content in sea buckthorn berries. Ding J; Ruan CJ; Guan Y; Shan JY; Li H; Bao YH Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706577 [TBL] [Abstract][Full Text] [Related]
12. RNA-seq data reveals a coordinated regulation mechanism of multigenes involved in the high accumulation of palmitoleic acid and oil in sea buckthorn berry pulp. Ding J; Ruan C; Du W; Guan Y BMC Plant Biol; 2019 May; 19(1):207. PubMed ID: 31109294 [TBL] [Abstract][Full Text] [Related]
13. HrCYP90B1 modulating brassinosteroid biosynthesis in sea buckthorn (Hippophae rhamnoides L.) against fruit fly (Rhagoletis batava obseuriosa Kol.) infection. Liu J; Wang Z; Zhao J; Zhao L; Wang L; Su Z; Wei J Tree Physiol; 2021 Mar; 41(3):444-459. PubMed ID: 33238299 [TBL] [Abstract][Full Text] [Related]
14. A new strategy for complete identification of sea buckthorn cultivars by using random amplified polymorphic DNA markers. Yang G; Ding J; Wu LR; Duan YD; Li AY; Shan JY; Wu YX Genet Mol Res; 2015 Mar; 14(1):1836-45. PubMed ID: 25867329 [TBL] [Abstract][Full Text] [Related]
15. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Ciesarová Z; Murkovic M; Cejpek K; Kreps F; Tobolková B; Koplík R; Belajová E; Kukurová K; Daško Ľ; Panovská Z; Revenco D; Burčová Z Food Res Int; 2020 Jul; 133():109170. PubMed ID: 32466930 [TBL] [Abstract][Full Text] [Related]
16. Associations of SRAP markers with dried-shrink disease resistance in a germplasm collection of sea buckthorn (Hippophae L.). Li H; Ruan CJ; Teixeira da Silva JA; Liu BQ Genome; 2010 Jun; 53(6):447-57. PubMed ID: 20555434 [TBL] [Abstract][Full Text] [Related]
17. Explicating genetic diversity based on ITS characterization and determination of antioxidant potential in sea buckthorn (Hippophae spp.). Haq SAU; Mir MA; Lone SM; Banoo A; Shafi F; Mir SA; Bhat JIA; Rashid R; Wani SH; Masoodi TH; Khan MN; Nehvi FA; Masoodi KZ Mol Biol Rep; 2022 Jun; 49(6):5229-5240. PubMed ID: 34387804 [TBL] [Abstract][Full Text] [Related]
18. Proanthocyanidins in Sea Buckthorn (Hippophaë rhamnoides L.) Berries of Different Origins with Special Reference to the Influence of Genetic Background and Growth Location. Yang W; Laaksonen O; Kallio H; Yang B J Agric Food Chem; 2016 Feb; 64(6):1274-82. PubMed ID: 26798947 [TBL] [Abstract][Full Text] [Related]
19. Tandem Mass Tag Based Quantitative Proteomics of Developing Sea Buckthorn Berries Reveals Candidate Proteins Related to Lipid Metabolism. Du W; Xiong CW; Ding J; Nybom H; Ruan CJ; Guo H J Proteome Res; 2019 May; 18(5):1958-1969. PubMed ID: 30990047 [TBL] [Abstract][Full Text] [Related]
20. β-Sitosterol: supercritical carbon dioxide extraction from sea buckthorn (Hippophae rhamnoides L.) seeds. Sajfrtová M; Licková I; Wimmerová M; Sovová H; Wimmer Z Int J Mol Sci; 2010 Apr; 11(4):1842-50. PubMed ID: 20480045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]