These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29574341)

  • 1. Postural reconfiguration and cycle-to-cycle variability in patients with work-related musculoskeletal disorders compared to healthy controls and in relation to pain emerging during a repetitive movement task.
    Longo A; Meulenbroek R; Haid T; Federolf P
    Clin Biomech (Bristol, Avon); 2018 May; 54():103-110. PubMed ID: 29574341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of a cognitive dual task on variability and local dynamic stability in sustained repetitive arm movements using principal component analysis: a pilot study.
    Longo A; Federolf P; Haid T; Meulenbroek R
    Exp Brain Res; 2018 Jun; 236(6):1611-1619. PubMed ID: 29589078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor variability in occupational health and performance.
    Srinivasan D; Mathiassen SE
    Clin Biomech (Bristol, Avon); 2012 Dec; 27(10):979-93. PubMed ID: 22954427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On functional motor adaptations: from the quantification of motor strategies to the prevention of musculoskeletal disorders in the neck-shoulder region.
    Madeleine P
    Acta Physiol (Oxf); 2010 Jun; 199 Suppl 679():1-46. PubMed ID: 20579000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The size and structure of arm movement variability decreased with work pace in a standardised repetitive precision task.
    Srinivasan D; Samani A; Mathiassen SE; Madeleine P
    Ergonomics; 2015; 58(1):128-39. PubMed ID: 25216404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics in posture space: Properties and relevance of principal accelerations for characterizing movement control.
    Longo A; Haid T; Meulenbroek R; Federolf P
    J Biomech; 2019 Jan; 82():397-403. PubMed ID: 30527635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Job enlargement and mechanical exposure variability in cyclic assembly work.
    Möller T; Mathiassen SE; Franzon H; Kihlberg S
    Ergonomics; 2004 Jan; 47(1):19-40. PubMed ID: 14660216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Industrial processing of wool: biomechanics and ergonomic aspects].
    Capodaglio EM; Alciato P; Russo F; Bazzini G; Angelino M
    G Ital Med Lav Ergon; 2005; 27(4):436-41. PubMed ID: 16512342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of symptomatic and asymptomatic office workers performing monotonous keyboard work--2: neck and shoulder kinematics.
    Szeto GP; Straker LM; O'Sullivan PB
    Man Ther; 2005 Nov; 10(4):281-91. PubMed ID: 15996890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor variability--an important issue in occupational life.
    Srinivasan D; Mathiassen SE
    Work; 2012; 41 Suppl 1():2527-34. PubMed ID: 22317100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive postural control for joint immobilization during multitask performance.
    Hsu WL
    PLoS One; 2014; 9(10):e108667. PubMed ID: 25329477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consistent individual motor variability traits demonstrated by females performing a long-cycle assembly task under conditions differing in temporal organisation.
    Jackson JA; Srinivasan D; Mathiassen SE
    Appl Ergon; 2020 May; 85():103046. PubMed ID: 32174342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in motor variability among individuals performing a standardized short-cycle manual task.
    Sandlund J; Srinivasan D; Heiden M; Mathiassen SE
    Hum Mov Sci; 2017 Jan; 51():17-26. PubMed ID: 27821310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task.
    Qin J; Lin JH; Faber GS; Buchholz B; Xu X
    J Electromyogr Kinesiol; 2014 Jun; 24(3):404-11. PubMed ID: 24642235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analytical method for characterizing repetitive motion and postural stress using spectral analysis.
    Radwin RG; Lin ML
    Ergonomics; 1993 Apr; 36(4):379-89. PubMed ID: 8472686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Work Pace on Upper Extremity Kinematics and Muscle Activity in a Short-Cycle Repetitive Pick-and-Place Task.
    Luger T; Mathiassen SE; Srinivasan D; Bosch T
    Ann Work Expo Health; 2017 Apr; 61(3):356-368. PubMed ID: 28355412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dual-task conditions on cervical spine movement variability.
    Niederer D; Vogt L; Vogel J; Banzer W
    J Back Musculoskelet Rehabil; 2017 Sep; 30(5):1075-1080. PubMed ID: 28505961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle injury in repetitive motion disorders.
    Sjøgaard G; Søgaard K
    Clin Orthop Relat Res; 1998 Jun; (351):21-31. PubMed ID: 9646743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The size of cycle-to-cycle variability in biomechanical exposure among butchers performing a standardised cutting task.
    Madeleine P; Voigt M; Mathiassen SE
    Ergonomics; 2008 Jul; 51(7):1078-95. PubMed ID: 18568966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exertion and pain do not alter coordination variability in runners with iliotibial band syndrome.
    Hafer JF; Brown AM; Boyer KA
    Clin Biomech (Bristol, Avon); 2017 Aug; 47():73-78. PubMed ID: 28618309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.