BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29574741)

  • 1. Rational modification of Corynebacterium glutamicum dihydrodipicolinate reductase to switch the nucleotide-cofactor specificity for increasing l-lysine production.
    Xu JZ; Yang HK; Liu LM; Wang YY; Zhang WG
    Biotechnol Bioeng; 2018 Jul; 115(7):1764-1777. PubMed ID: 29574741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping.
    Xu JZ; Ruan HZ; Chen XL; Zhang F; Zhang W
    Microb Cell Fact; 2019 Apr; 18(1):65. PubMed ID: 30943966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Insight into Dihydrodipicolinate Reductase from Corybebacterium glutamicum for Lysine Biosynthesis.
    Sagong HY; Kim KJ
    J Microbiol Biotechnol; 2016 Feb; 26(2):226-32. PubMed ID: 26502738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum.
    Wu W; Zhang Y; Liu D; Chen Z
    Metab Eng; 2019 Mar; 52():77-86. PubMed ID: 30458240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic mechanism and cofactor preference of dihydrodipicolinate reductase from methicillin-resistant Staphylococcus aureus.
    Dommaraju SR; Dogovski C; Czabotar PE; Hor L; Smith BJ; Perugini MA
    Arch Biochem Biophys; 2011 Aug; 512(2):167-74. PubMed ID: 21704017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of dihydrodipicolinate reductase (DapB) from Mycobacterium tuberculosis in three crystal forms.
    Janowski R; Kefala G; Weiss MS
    Acta Crystallogr D Biol Crystallogr; 2010 Jan; 66(Pt 1):61-72. PubMed ID: 20057050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and nucleotide specificity of Staphylococcus aureus dihydrodipicolinate reductase (DapB).
    Girish TS; Navratna V; Gopal B
    FEBS Lett; 2011 Aug; 585(16):2561-7. PubMed ID: 21803042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant DHDPR forms a dimer with unique secondary structure features that preclude higher-order assembly.
    Watkin SAJ; Keown JR; Richards E; Goldstone DC; Devenish SRA; Grant Pearce F
    Biochem J; 2018 Jan; 475(1):137-150. PubMed ID: 29187521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase.
    Trigoso YD; Evans RC; Karsten WE; Chooback L
    PLoS One; 2016; 11(1):e0146525. PubMed ID: 26815040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational modification of tricarboxylic acid cycle for improving L-lysine production in Corynebacterium glutamicum.
    Xu JZ; Wu ZH; Gao SJ; Zhang W
    Microb Cell Fact; 2018 Jul; 17(1):105. PubMed ID: 29981572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production.
    Geng F; Chen Z; Zheng P; Sun J; Zeng AP
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):1963-71. PubMed ID: 22644522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway.
    Xu J; Han M; Zhang J; Guo Y; Zhang W
    Amino Acids; 2014 Sep; 46(9):2165-75. PubMed ID: 24879631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased glucose utilization and cell growth of Corynebacterium glutamicum by modifying the glucose-specific phosphotransferase system (PTS
    Xu J; Zhang J; Liu D; Zhang W
    Can J Microbiol; 2016 Dec; 62(12):983-992. PubMed ID: 27718589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
    Pérez-García F; Max Risse J; Friehs K; Wendisch VF
    Biotechnol J; 2017 Jul; 12(7):. PubMed ID: 28169491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of aspartokinase, aspartate semialdehyde dehydrogenase, dihydrodipicolinate synthase and dihydrodipicolinate reductase in Lactobacillus plantarum.
    Cahyanto MN; Kawasaki H; Nagashio M; Fujiyama K; Seki T
    Microbiology (Reading); 2006 Jan; 152(Pt 1):105-112. PubMed ID: 16385120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of dihydrodipicolinate reductase from Thermotoga maritima reveals evolution of substrate binding kinetics.
    Pearce FG; Sprissler C; Gerrard JA
    J Biochem; 2008 May; 143(5):617-23. PubMed ID: 18250105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane.
    Kind S; Jeong WK; Schröder H; Wittmann C
    Metab Eng; 2010 Jul; 12(4):341-51. PubMed ID: 20381632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression, purification, and characterization of Escherichia coli dihydrodipicolinate reductase.
    Reddy SG; Sacchettini JC; Blanchard JS
    Biochemistry; 1995 Mar; 34(11):3492-501. PubMed ID: 7893644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.