These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 29575500)
1. Future warming and acidification result in multiple ecological impacts to a temperate coralline alga. Huggett MJ; McMahon K; Bernasconi R Environ Microbiol; 2018 Aug; 20(8):2769-2782. PubMed ID: 29575500 [TBL] [Abstract][Full Text] [Related]
2. Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Huggett MJ; Williamson JE; de Nys R; Kjelleberg S; Steinberg PD Oecologia; 2006 Oct; 149(4):604-19. PubMed ID: 16794830 [TBL] [Abstract][Full Text] [Related]
3. Articulated coralline algae of the genus Amphiroa are highly effective natural inducers of settlement in the tropical abalone Haliotis asinina. Williams EA; Craigie A; Yeates A; Degnan SM Biol Bull; 2008 Aug; 215(1):98-107. PubMed ID: 18723641 [TBL] [Abstract][Full Text] [Related]
4. High diversity of coralline algae in New Zealand revealed: Knowledge gaps and implications for future research. Twist BA; Neill KF; Bilewitch J; Jeong SY; Sutherland JE; Nelson WA PLoS One; 2019; 14(12):e0225645. PubMed ID: 31790447 [TBL] [Abstract][Full Text] [Related]
5. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376 [TBL] [Abstract][Full Text] [Related]
6. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
7. Consequences of Warming and Acidification for the Temperate Articulated Coralline Alga, Calliarthron Tuberculosum (Florideophyceae, Rhodophyta). Donham EM; Hamilton SL; Aiello I; Price NN; Smith JE J Phycol; 2022 Aug; 58(4):517-529. PubMed ID: 35657106 [TBL] [Abstract][Full Text] [Related]
8. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1). Diaz-Pulido G; Anthony KR; Kline DI; Dove S; Hoegh-Guldberg O J Phycol; 2012 Feb; 48(1):32-9. PubMed ID: 27009647 [TBL] [Abstract][Full Text] [Related]
9. Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. Webster NS; Soo R; Cobb R; Negri AP ISME J; 2011 Apr; 5(4):759-70. PubMed ID: 20944682 [TBL] [Abstract][Full Text] [Related]
10. Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification. Cavalcanti GS; Shukla P; Morris M; Ribeiro B; Foley M; Doane MP; Thompson CC; Edwards MS; Dinsdale EA; Thompson FL BMC Genomics; 2018 Sep; 19(1):701. PubMed ID: 30249182 [TBL] [Abstract][Full Text] [Related]
12. Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Jorissen H; Galand PE; Bonnard I; Meiling S; Raviglione D; Meistertzheim AL; Hédouin L; Banaigs B; Payri CE; Nugues MM Sci Rep; 2021 Jul; 11(1):14610. PubMed ID: 34272460 [TBL] [Abstract][Full Text] [Related]
13. Rapid multi-generational acclimation of coralline algal reproductive structures to ocean acidification. Moore B; Comeau S; Bekaert M; Cossais A; Purdy A; Larcombe E; Puerzer F; McCulloch MT; Cornwall CE Proc Biol Sci; 2021 May; 288(1950):20210130. PubMed ID: 33975470 [TBL] [Abstract][Full Text] [Related]
14. An intertidal life: Combined effects of acidification and winter heatwaves on a coralline alga (Ellisolandia elongata) and its associated invertebrate community. Ragazzola F; Marchini A; Adani M; Bordone A; Castelli A; Cerrati G; Kolzenburg R; Langeneck J; di Marzo C; Nannini M; Raiteri G; Romanelli E; Santos M; Vasapollo C; Pipitone C; Lombardi C Mar Environ Res; 2021 Jul; 169():105342. PubMed ID: 33933902 [TBL] [Abstract][Full Text] [Related]
15. Bacterial Communities Associated With Healthy and Bleached Crustose Coralline Alga Yang F; Xiao Z; Wei Z; Long L Front Microbiol; 2021; 12():646143. PubMed ID: 34177828 [TBL] [Abstract][Full Text] [Related]
16. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Vásquez-Elizondo RM; Enríquez S Sci Rep; 2016 Jan; 6():19030. PubMed ID: 26740396 [TBL] [Abstract][Full Text] [Related]
17. Calcifying algae maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification. O'Leary JK; Barry JP; Gabrielson PW; Rogers-Bennett L; Potts DC; Palumbi SR; Micheli F Sci Rep; 2017 Jul; 7(1):5774. PubMed ID: 28720836 [TBL] [Abstract][Full Text] [Related]
18. Coralline algal metabolites induce settlement and mediate the inductive effect of epiphytic microbes on coral larvae. Gómez-Lemos LA; Doropoulos C; Bayraktarov E; Diaz-Pulido G Sci Rep; 2018 Dec; 8(1):17557. PubMed ID: 30510183 [TBL] [Abstract][Full Text] [Related]
19. Crustose coralline algae and a cnidarian neuropeptide trigger larval settlement in two coral reef sponges. Whalan S; Webster NS; Negri AP PLoS One; 2012; 7(1):e30386. PubMed ID: 22295083 [TBL] [Abstract][Full Text] [Related]
20. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Kim JH; Kim N; Moon H; Lee S; Jeong SY; Diaz-Pulido G; Edwards MS; Kang JH; Kang EJ; Oh HJ; Hwang JD; Kim IN Mar Pollut Bull; 2020 Aug; 157():111324. PubMed ID: 32658689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]