These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 29575709)
1. Highly Efficient Hydrogenation of Levulinic Acid into γ-Valerolactone using an Iron Pincer Complex. Yi Y; Liu H; Xiao LP; Wang B; Song G ChemSusChem; 2018 May; 11(9):1474-1478. PubMed ID: 29575709 [TBL] [Abstract][Full Text] [Related]
2. Homogeneous Catalyzed Reactions of Levulinic Acid: To γ-Valerolactone and Beyond. Omoruyi U; Page S; Hallett J; Miller PW ChemSusChem; 2016 Aug; 9(16):2037-47. PubMed ID: 27464831 [TBL] [Abstract][Full Text] [Related]
3. Recyclable Earth-Abundant Metal Nanoparticle Catalysts for Selective Transfer Hydrogenation of Levulinic Acid to Produce γ-Valerolactone. Gowda RR; Chen EY ChemSusChem; 2016 Jan; 9(2):181-5. PubMed ID: 26735911 [TBL] [Abstract][Full Text] [Related]
4. Amine-promoted Ru Yang Y; Yang F; Wang H; Zhou B; Hao S J Colloid Interface Sci; 2021 Jan; 581(Pt A):167-176. PubMed ID: 32771728 [TBL] [Abstract][Full Text] [Related]
5. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol. Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556 [TBL] [Abstract][Full Text] [Related]
6. Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support. Sorokina SA; Mikhailov SP; Kuchkina NV; Bykov AV; Vasiliev AL; Ezernitskaya MG; Golovin AL; Nikoshvili LZ; Sulman MG; Shifrina ZB Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054984 [TBL] [Abstract][Full Text] [Related]
7. Noble Metal-Free Hierarchical ZrY Zeolite Efficient for Hydrogenation of Biomass-Derived Levulinic Acid. Hu D; Xu H; Wu Z; Zhang M; Zhao Z; Wang Y; Yan K Front Chem; 2021; 9():725175. PubMed ID: 34712649 [TBL] [Abstract][Full Text] [Related]
8. Recent Advances in Ruthenium-Catalyzed Hydrogenation Reactions of Renewable Biomass-Derived Levulinic Acid in Aqueous Media. Seretis A; Diamantopoulou P; Thanou I; Tzevelekidis P; Fakas C; Lilas P; Papadogianakis G Front Chem; 2020; 8():221. PubMed ID: 32373576 [TBL] [Abstract][Full Text] [Related]
9. Zirconium Phosphate-Pillared Zeolite MCM-36 for Green Production of γ-Valerolactone from Levulinic Acid via Catalytic Transfer Hydrogenation. Hou P; Su H; Jin K; Li Q; Yan W Molecules; 2024 Aug; 29(16):. PubMed ID: 39202858 [TBL] [Abstract][Full Text] [Related]
10. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions. Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298 [TBL] [Abstract][Full Text] [Related]
11. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators. Yun WC; Yang MT; Lin KA J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source. Yu Z; Lu X; Xiong J; Li X; Bai H; Ji N ChemSusChem; 2020 Jun; 13(11):2916-2930. PubMed ID: 32153131 [TBL] [Abstract][Full Text] [Related]
13. RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature. Yang Z; Huang YB; Guo QX; Fu Y Chem Commun (Camb); 2013 Jun; 49(46):5328-30. PubMed ID: 23648801 [TBL] [Abstract][Full Text] [Related]
14. Catalytic hydrogenation of levulinic acid to γ-valerolactone over lignin-metal coordinated carbon nanospheres in water. Xu Y; Liang Y; Guo H; Qi X Int J Biol Macromol; 2023 Jun; 240():124451. PubMed ID: 37062379 [TBL] [Abstract][Full Text] [Related]
15. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone. Wright WR; Palkovits R ChemSusChem; 2012 Sep; 5(9):1657-67. PubMed ID: 22890968 [TBL] [Abstract][Full Text] [Related]
16. 3D Oxide-Derived Ru Catalyst for Ultra-Efficient Hydrogenation of Levulinic Acid to γ-Valerolactone. Wang S; Zhuang Z; Chen X; Wang Y; Li X; Yang M; Wu Y; Peng Q; Chen C; Li Y Small; 2024 Feb; 20(7):e2306227. PubMed ID: 37806748 [TBL] [Abstract][Full Text] [Related]
17. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization. Zheng J; Zhu J; Xu X; Wang W; Li J; Zhao Y; Tang K; Song Q; Qi X; Kong D; Tang Y Sci Rep; 2016 Jul; 6():28898. PubMed ID: 27377401 [TBL] [Abstract][Full Text] [Related]
18. Vapor-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst. Popova M; Djinović P; Ristić A; Lazarova H; Dražić G; Pintar A; Balu AM; Novak Tušar N Front Chem; 2018; 6():285. PubMed ID: 30065923 [TBL] [Abstract][Full Text] [Related]
19. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts. Popova M; Trendafilova I; Oykova M; Mitrev Y; Shestakova P; Mihályi MR; Szegedi Á Molecules; 2022 Aug; 27(17):. PubMed ID: 36080151 [TBL] [Abstract][Full Text] [Related]
20. In Situ Construction of a Co/ZnO@C Heterojunction Catalyst for Efficient Hydrogenation of Biomass Derivative under Mild Conditions. Shao YR; Zhou L; Yu L; Li ZF; Li YT; Li W; Hu TL ACS Appl Mater Interfaces; 2022 Apr; 14(15):17195-17207. PubMed ID: 35384659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]