These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 29575891)

  • 1. A New Anisotropic Dirac Cone Material: A B
    Zhao Y; Li X; Liu J; Zhang C; Wang Q
    J Phys Chem Lett; 2018 Apr; 9(7):1815-1820. PubMed ID: 29575891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new Dirac cone material: a graphene-like Be
    Wang B; Yuan S; Li Y; Shi L; Wang J
    Nanoscale; 2017 May; 9(17):5577-5582. PubMed ID: 28406258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Borophosphene: A New Anisotropic Dirac Cone Monolayer with a High Fermi Velocity and a Unique Self-Doping Feature.
    Zhang Y; Kang J; Zheng F; Gao PF; Zhang SL; Wang LW
    J Phys Chem Lett; 2019 Nov; 10(21):6656-6663. PubMed ID: 31608641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity.
    Xu LC; Du A; Kou L
    Phys Chem Chem Phys; 2016 Oct; 18(39):27284-27289. PubMed ID: 27711580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomically thin NiB
    Tang X; Sun W; Lu C; Kou L; Chen C
    Phys Chem Chem Phys; 2019 Jan; 21(2):617-622. PubMed ID: 30540305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional honeycomb-kagome Ta
    Zhang L; Zhang CW; Zhang SF; Ji WX; Li P; Wang PJ
    Nanoscale; 2019 Mar; 11(12):5666-5673. PubMed ID: 30865199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct evidence of interaction-induced Dirac cones in a monolayer silicene/Ag(111) system.
    Feng Y; Liu D; Feng B; Liu X; Zhao L; Xie Z; Liu Y; Liang A; Hu C; Hu Y; He S; Liu G; Zhang J; Chen C; Xu Z; Chen L; Wu K; Liu YT; Lin H; Huang ZQ; Hsu CH; Chuang FC; Bansil A; Zhou XJ
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14656-14661. PubMed ID: 27930314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional carbon materials with an anisotropic Dirac cone: high stability and tunable Fermi velocity.
    Liu S; Wang H; Ma F; Du H; Liu B
    Phys Chem Chem Phys; 2022 Aug; 24(32):19263-19268. PubMed ID: 35920608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of 2D Anisotropic Dirac Cones.
    Feng B; Zhang J; Ito S; Arita M; Cheng C; Chen L; Wu K; Komori F; Sugino O; Miyamoto K; Okuda T; Meng S; Matsuda I
    Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29171690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two dimensional Dirac carbon allotropes from graphene.
    Xu LC; Wang RZ; Miao MS; Wei XL; Chen YP; Yan H; Lau WM; Liu LM; Ma YM
    Nanoscale; 2014 Jan; 6(2):1113-8. PubMed ID: 24296630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical prediction of HfB
    Liu Z; Wang P; Cui Q; Yang G; Jin S; Xiong K
    RSC Adv; 2019 Jan; 9(5):2740-2745. PubMed ID: 35520500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excellent Electrolyte Wettability and High Energy Density of B
    Lei S; Chen X; Xiao B; Zhang W; Liu J
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28830-28840. PubMed ID: 31321971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dirac Fermions in Borophene.
    Feng B; Sugino O; Liu RY; Zhang J; Yukawa R; Kawamura M; Iimori T; Kim H; Hasegawa Y; Li H; Chen L; Wu K; Kumigashira H; Komori F; Chiang TC; Meng S; Matsuda I
    Phys Rev Lett; 2017 Mar; 118(9):096401. PubMed ID: 28306312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semimetallic carbon honeycombs: new three-dimensional graphene allotropes with Dirac cones.
    Wang S; Wu D; Yang B; Ruckenstein E; Chen H
    Nanoscale; 2018 Feb; 10(6):2748-2754. PubMed ID: 29336453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A family of robust Dirac cone materials: two-dimensional hexagonal M
    Li Q; Yan C; Qi C; Qiu S; Yang T; Cai J
    Phys Chem Chem Phys; 2023 Apr; 25(15):10811-10819. PubMed ID: 37010915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong anisotropy of Dirac cones in SrMnBi2 and CaMnBi2 revealed by angle-resolved photoemission spectroscopy.
    Feng Y; Wang Z; Chen C; Shi Y; Xie Z; Yi H; Liang A; He S; He J; Peng Y; Liu X; Liu Y; Zhao L; Liu G; Dong X; Zhang J; Chen C; Xu Z; Dai X; Fang Z; Zhou XJ
    Sci Rep; 2014 Jun; 4():5385. PubMed ID: 24947490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic and optical properties of boron-based hybrid monolayers.
    Katoch N; Kumar A; Kumar J; Ahluwalia PK; Pandey R
    Nanotechnology; 2021 Jul; 32(41):. PubMed ID: 34167107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic and magnetic properties of honeycomb transition metal monolayers: first-principles insights.
    Li X; Dai Y; Ma Y; Huang B
    Phys Chem Chem Phys; 2014 Jul; 16(26):13383-9. PubMed ID: 24879520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic carrier mobility in two-dimensional materials with tilted Dirac cones: theory and application.
    Cheng T; Lang H; Li Z; Liu Z; Liu Z
    Phys Chem Chem Phys; 2017 Sep; 19(35):23942-23950. PubMed ID: 28808705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Anisotropic Dirac Fermions in Square Graphynes.
    Zhang LZ; Wang ZF; Wang ZM; Du SX; Gao HJ; Liu F
    J Phys Chem Lett; 2015 Aug; 6(15):2959-62. PubMed ID: 26267188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.