These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29576683)

  • 1. Vertical Distributions of Coccolithophores, PIC, POC, Biogenic Silica, and Chlorophyll
    Balch WM; Bowler BC; Drapeau DT; Lubelczyk LC; Lyczkowski E
    Global Biogeochem Cycles; 2018 Jan; 32(1):2-17. PubMed ID: 29576683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological responses of coccolithophores to abrupt exposure of naturally low pH deep seawater.
    Iglesias-Rodriguez MD; Jones BM; Blanco-Ameijeiras S; Greaves M; Huete-Ortega M; Lebrato M
    PLoS One; 2017; 12(7):e0181713. PubMed ID: 28750008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores.
    Balch WM
    Ann Rev Mar Sci; 2018 Jan; 10():71-98. PubMed ID: 29298138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas.
    Villareal TA; Pilskaln CH; Montoya JP; Dennett M
    PeerJ; 2014; 2():e302. PubMed ID: 24688877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of living coccolithophores in eastern Indian Ocean during spring intermonsoon.
    Liu H; Sun J; Wang D; Zhang X; Zhang C; Song S; Thangaraj S
    Sci Rep; 2018 Aug; 8(1):12488. PubMed ID: 30131499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deriving vertical profiles of chlorophyll-a concentration in the upper layer of seawaters using ICESat-2 photon-counting lidar.
    Zheng H; Ma Y; Huang J; Yang J; Su D; Yang F; Wang XH
    Opt Express; 2022 Aug; 30(18):33320-33336. PubMed ID: 36242374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decadal changes in global phytoplankton compositions influenced by biogeochemical variables.
    Mishra RK; Jena B; Venkataramana V; Sreerag A; Soares MA; AnilKumar N
    Environ Res; 2022 Apr; 206():112546. PubMed ID: 34902377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coccolithophore calcification: Changing paradigms in changing oceans.
    Brownlee C; Langer G; Wheeler GL
    Acta Biomater; 2021 Jan; 120():4-11. PubMed ID: 32763469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of subsurface chlorophyll maxima during the boreal summer in the South China Sea with respect to environmental properties.
    Xu W; Wang G; Cheng X; Jiang L; Zhou W; Cao W
    Sci Total Environ; 2022 May; 820():153243. PubMed ID: 35065118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Upward and regeneration fluxes of inorganic nitrogen and phosphorus in the deep-water areas of the Black-Sea].
    Krivenko OV; Parkhomenko AV
    Zh Obshch Biol; 2014; 75(5):394-408. PubMed ID: 25782277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meta-analysis reveals responses of coccolithophores and diatoms to warming.
    Wang J; Zeng C; Feng Y
    Mar Environ Res; 2024 Jan; 193():106275. PubMed ID: 37992480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active and passive optical remote sensing of the aquatic environment: introduction to the feature issue.
    Lee Z; Churnside J; Mao Z; Wu S; Zibordi G
    Appl Opt; 2020 Apr; 59(10):APS1-APS2. PubMed ID: 32400570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malformation in coccolithophores in low pH waters: evidences from the eastern Arabian Sea.
    Shetye S; Gazi S; Manglavil A; Shenoy D; Kurian S; Pratihary A; Shirodkar G; Mohan R; Dias A; Naik H; Gauns M; Nandakumar K; Borker S
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):42351-42366. PubMed ID: 36648723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote sensing of seawater optical properties and the subsurface phytoplankton layer in coastal waters using an airborne multiwavelength polarimetric ocean lidar.
    Yuan D; Mao Z; Chen P; He Y; Pan D
    Opt Express; 2022 Aug; 30(16):29564-29583. PubMed ID: 36299129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A regional-scale approach for modeling primary production and biogenic silica export in the Southern Ocean.
    Kwon YS; La HS; Kang HW; Park J
    Environ Res; 2023 Jan; 217():114811. PubMed ID: 36414105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Coccolithophore Blooms With BioGeoChemical-Argo Floats.
    Terrats L; Claustre H; Cornec M; Mangin A; Neukermans G
    Geophys Res Lett; 2020 Dec; 47(23):e2020GL090559. PubMed ID: 33380764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean.
    Stramska M; Stramski D
    Appl Opt; 2005 Mar; 44(9):1735-47. PubMed ID: 15813278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable carbon isotope fractionation of photosynthetic communities over depth in an open-ocean euphotic zone.
    Henderson LC; Wittmers F; Carlson CA; Worden AZ; Close HG
    Proc Natl Acad Sci U S A; 2024 Mar; 121(10):e2304613121. PubMed ID: 38408243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating PACE Global Ocean Radiances.
    Gregg WW; Rousseaux CS
    Front Mar Sci; 2017; 4():60. PubMed ID: 29292403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of oceanic subsurface chlorophyll maxima to environmental drivers in the Northern Indian Ocean.
    Garg S; Gauns M; Pratihary AK
    Environ Res; 2024 Jan; 240(Pt 1):117528. PubMed ID: 37898227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.