BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 29577013)

  • 1. Effect of ribbon width on electrical transport properties of graphene nanoribbons.
    Bang K; Chee SS; Kim K; Son M; Jang H; Lee BH; Baik KH; Myoung JM; Ham MH
    Nano Converg; 2018; 5(1):7. PubMed ID: 29577013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational fabrication of graphene nanoribbons using a nanowire etch mask.
    Bai J; Duan X; Huang Y
    Nano Lett; 2009 May; 9(5):2083-7. PubMed ID: 19344151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography.
    Abbas AN; Liu G; Liu B; Zhang L; Liu H; Ohlberg D; Wu W; Zhou C
    ACS Nano; 2014 Feb; 8(2):1538-46. PubMed ID: 24467172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Aligned Polymeric Nanowire Etch-Mask Lithography Enabling the Integration of Graphene Nanoribbon Transistors.
    Jeon S; Han P; Jeong J; Hwang WS; Hong SW
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectroscopy of lithographically patterned graphene nanoribbons.
    Ryu S; Maultzsch J; Han MY; Kim P; Brus LE
    ACS Nano; 2011 May; 5(5):4123-30. PubMed ID: 21452879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene.
    Solís-Fernández P; Yoshida K; Ogawa Y; Tsuji M; Ago H
    Adv Mater; 2013 Dec; 25(45):6562-8. PubMed ID: 24030892
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Cai L; He W; Xue X; Huang J; Zhou K; Zhou X; Xu Z; Yu G
    Natl Sci Rev; 2021 Dec; 8(12):nwaa298. PubMed ID: 34987835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified Engineering of Graphene Nanoribbons Prepared via On-Surface Synthesis.
    Zhou X; Yu G
    Adv Mater; 2020 Feb; 32(6):e1905957. PubMed ID: 31830353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene nanoribbon devices at high bias.
    Han MY; Kim P
    Nano Converg; 2014; 1(1):1. PubMed ID: 28191387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wrinkle engineering: a new approach to massive graphene nanoribbon arrays.
    Pan Z; Liu N; Fu L; Liu Z
    J Am Chem Soc; 2011 Nov; 133(44):17578-81. PubMed ID: 21981554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlating atomic structure and transport in suspended graphene nanoribbons.
    Qi ZJ; Rodríguez-Manzo JA; Botello-Méndez AR; Hong SJ; Stach EA; Park YW; Charlier JC; Drndić M; Johnson AT
    Nano Lett; 2014 Aug; 14(8):4238-44. PubMed ID: 24954396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons.
    Liang X; Wi S
    ACS Nano; 2012 Nov; 6(11):9700-10. PubMed ID: 23078122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons.
    Passi V; Gahoi A; Senkovskiy BV; Haberer D; Fischer FR; Grüneis A; Lemme MC
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):9900-9903. PubMed ID: 29516716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene nanomesh.
    Bai J; Zhong X; Jiang S; Huang Y; Duan X
    Nat Nanotechnol; 2010 Mar; 5(3):190-4. PubMed ID: 20154685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Robust Highly Aligned DNA Nanowire Array-Enabled Lithography for Graphene Nanoribbon Transistors.
    Kang SH; Hwang WS; Lin Z; Kwon SH; Hong SW
    Nano Lett; 2015 Dec; 15(12):7913-20. PubMed ID: 26569342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically derived, ultrasmooth graphene nanoribbon semiconductors.
    Li X; Wang X; Zhang L; Lee S; Dai H
    Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled Preparation and Device Application of Sub-5 nm Graphene Nanoribbons and Graphene Nanoribbon/Carbon Nanotube Intramolecular Heterostructures.
    He Z; Wang K; Yan C; Wan L; Zhou Q; Zhang T; Ye X; Zhang Y; Shi F; Jiang S; Zhao J; Wang K; Chen C
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7148-7156. PubMed ID: 36692227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon Nanotubes.
    Li H; Zhang J; Gholizadeh AB; Brownless J; Fu Y; Cai W; Han Y; Duan T; Wang Y; Ling H; Leifer K; Curry R; Song A
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52892-52900. PubMed ID: 34719923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Etching and narrowing of graphene from the edges.
    Wang X; Dai H
    Nat Chem; 2010 Aug; 2(8):661-5. PubMed ID: 20651729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.