These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29577074)

  • 1. An enhanced teaching interface for a robot using DMP and GMR.
    Li C; Yang C; Ju Z; Annamalai ASK
    Int J Intell Robot Appl; 2018; 2(1):110-121. PubMed ID: 29577074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Enhanced Robot Massage System in Smart Homes Using Force Sensing and a Dynamic Movement Primitive.
    Li C; Fahmy A; Li S; Sienz J
    Front Neurorobot; 2020; 14():30. PubMed ID: 32714174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Incremental Learning Framework to Enhance Teaching by Demonstration Based on Multimodal Sensor Fusion.
    Li J; Zhong J; Yang J; Yang C
    Front Neurorobot; 2020; 14():55. PubMed ID: 32982712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives.
    Yang C; Chen C; He W; Cui R; Li Z
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):777-787. PubMed ID: 30047914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on Robot Screwing Skill Method Based on Demonstration Learning.
    Li F; Bai Y; Zhao M; Fu T; Men Y; Song R
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Task-Learning Strategy for Robotic Assembly Tasks from Human Demonstrations.
    Ding G; Liu Y; Zang X; Zhang X; Liu G; Zhao J
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on robot force control based on the GMM/GMR algorithm fusing different compensation strategies.
    Xiao M; Zhang X; Zhang T; Chen S; Zou Y; Wu W
    Front Neurorobot; 2024; 18():1290853. PubMed ID: 38348018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion generation of robotic surgical tasks: learning from expert demonstrations.
    Reiley CE; Plaku E; Hager GD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():967-70. PubMed ID: 21096982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning Trajectory Distributions for Assisted Teleoperation and Path Planning.
    Ewerton M; Arenz O; Maeda G; Koert D; Kolev Z; Takahashi M; Peters J
    Front Robot AI; 2019; 6():89. PubMed ID: 33501104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-robot skill transmission for mobile robot via learning by demonstration.
    Li J; Wang J; Wang S; Yang C
    Neural Comput Appl; 2021 Sep; ():1-11. PubMed ID: 34566265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Augmented Reality Based Human-Robot Interaction Interface Using Kalman Filter Sensor Fusion.
    Li C; Fahmy A; Sienz J
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31652544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Teleoperation of Collaborative Robot for Remote Dementia Care in Home Environments.
    Lv H; Yang G; Zhou H; Huang X; Yang H; Pang Z
    IEEE J Transl Eng Health Med; 2020; 8():1400510. PubMed ID: 32617197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Multi-Modal Teleoperation of a Humanoid Assistive Robot with Real-Time Motion Mimic.
    CerĂ³n JC; Sunny MSH; Brahmi B; Mendez LM; Fareh R; Ahmed HU; Rahman MH
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn IMUs.
    Fitter NT; Kuchenbecker KJ
    Front Robot AI; 2018; 5():85. PubMed ID: 33500964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of primitive representation from captured human movements and measured ground reaction force to generate physically consistent imitated behaviors.
    Ariki Y; Hyon SH; Morimoto J
    Neural Netw; 2013 Apr; 40():32-43. PubMed ID: 23380596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified Dynamic Movement Primitives: Robot Trajectory Planning and Force Control Under Curved Surface Constraints.
    Han L; Yuan H; Xu W; Huang Y
    IEEE Trans Cybern; 2023 Jul; 53(7):4245-4258. PubMed ID: 35333729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Framework for Composite Layup Skill Learning and Generalizing Through Teleoperation.
    Si W; Wang N; Li Q; Yang C
    Front Neurorobot; 2022; 16():840240. PubMed ID: 35250529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trajectory Learning for Robot Programming by Demonstration Using Hidden Markov Model and Dynamic Time Warping.
    Vakanski A; Mantegh I; Irish A; Janabi-Sharifi F
    IEEE Trans Syst Man Cybern B Cybern; 2012 Aug; 42(4):1039-52. PubMed ID: 22411023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface.
    Kyrarini M; Zheng Q; Haseeb MA; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On learning, representing, and generalizing a task in a humanoid robot.
    Calinon S; Guenter F; Billard A
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):286-98. PubMed ID: 17416157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.