These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
497 related articles for article (PubMed ID: 29577122)
1. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy. Naitabdi A; Boucly A; Rochet F; Fagiewicz R; Olivieri G; Bournel F; Benbalagh R; Sirotti F; Gallet JJ Nanoscale; 2018 Apr; 10(14):6566-6580. PubMed ID: 29577122 [TBL] [Abstract][Full Text] [Related]
2. Understanding the CO Oxidation on Pt Nanoparticles Supported on MOFs by Vakili R; Gibson EK; Chansai S; Xu S; Al-Janabi N; Wells PP; Hardacre C; Walton A; Fan X ChemCatChem; 2018 Oct; 10(19):4238-4242. PubMed ID: 31007773 [TBL] [Abstract][Full Text] [Related]
3. Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. An K; Alayoglu S; Musselwhite N; Plamthottam S; Melaet G; Lindeman AE; Somorjai GA J Am Chem Soc; 2013 Nov; 135(44):16689-96. PubMed ID: 24090187 [TBL] [Abstract][Full Text] [Related]
4. Stability of platinum nanoparticles supported on SiO2/Si(111): a high-pressure X-ray photoelectron spectroscopy study. Porsgaard S; Merte LR; Ono LK; Behafarid F; Matos J; Helveg S; Salmeron M; Roldan Cuenya B; Besenbacher F ACS Nano; 2012 Dec; 6(12):10743-9. PubMed ID: 23140267 [TBL] [Abstract][Full Text] [Related]
5. CO oxidation on Pt(111) at near ambient pressures. Krick Calderón S; Grabau M; Óvári L; Kress B; Steinrück HP; Papp C J Chem Phys; 2016 Jan; 144(4):044706. PubMed ID: 26827227 [TBL] [Abstract][Full Text] [Related]
6. In situ observations of the structural dynamics of platinum-cobalt-hydroxide nanocatalysts under CO oxidation. Huang L; Song X; Lin Y; Liu C; He W; Wang S; Long Z; Sun Z Nanoscale; 2020 Feb; 12(5):3273-3283. PubMed ID: 31971202 [TBL] [Abstract][Full Text] [Related]
7. Ambient Pressure Hard X-ray Photoelectron Spectroscopy for Functional Material Systems as Fuel Cells under Working Conditions. Takagi Y; Uruga T; Tada M; Iwasawa Y; Yokoyama T Acc Chem Res; 2018 Mar; 51(3):719-727. PubMed ID: 29509021 [TBL] [Abstract][Full Text] [Related]
9. Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. Tao F; Grass ME; Zhang Y; Butcher DR; Aksoy F; Aloni S; Altoe V; Alayoglu S; Renzas JR; Tsung CK; Zhu Z; Liu Z; Salmeron M; Somorjai GA J Am Chem Soc; 2010 Jun; 132(25):8697-703. PubMed ID: 20521788 [TBL] [Abstract][Full Text] [Related]
10. Active Surface Oxygen for Catalytic CO Oxidation on Pd(100) Proceeding under Near Ambient Pressure Conditions. Toyoshima R; Yoshida M; Monya Y; Suzuki K; Mun BS; Amemiya K; Mase K; Kondoh H J Phys Chem Lett; 2012 Nov; 3(21):3182-7. PubMed ID: 26296026 [TBL] [Abstract][Full Text] [Related]
11. In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles. Föttinger K; Rupprechter G Acc Chem Res; 2014 Oct; 47(10):3071-9. PubMed ID: 25247260 [TBL] [Abstract][Full Text] [Related]
12. In situ formation of the active sites in Pd-Au bimetallic nanocatalysts for CO oxidation: NAP (near ambient pressure) XPS and MS study. Bukhtiyarov AV; Prosvirin IP; Saraev AA; Klyushin AY; Knop-Gericke A; Bukhtiyarov VI Faraday Discuss; 2018 Sep; 208(0):255-268. PubMed ID: 29877526 [TBL] [Abstract][Full Text] [Related]
13. Distinct and dramatic water dissociation on GaP(111) tracked by near-ambient pressure X-ray photoelectron spectroscopy. Zhang X; Ptasinska S Phys Chem Chem Phys; 2015 Feb; 17(5):3909-18. PubMed ID: 25559043 [TBL] [Abstract][Full Text] [Related]
14. Growth of Stable Surface Oxides on Pt(111) at Near-Ambient Pressures. Fantauzzi D; Krick Calderón S; Mueller JE; Grabau M; Papp C; Steinrück HP; Senftle TP; van Duin AC; Jacob T Angew Chem Int Ed Engl; 2017 Mar; 56(10):2594-2598. PubMed ID: 28120368 [TBL] [Abstract][Full Text] [Related]
15. Aqueous solution synthesis of Pt-M (M = Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane. Wang S; Zhang D; Ma Y; Zhang H; Gao J; Nie Y; Sun X ACS Appl Mater Interfaces; 2014 Aug; 6(15):12429-35. PubMed ID: 25058566 [TBL] [Abstract][Full Text] [Related]
16. In situ study of oxidation states of platinum nanoparticles on a polymer electrolyte fuel cell electrode by near ambient pressure hard X-ray photoelectron spectroscopy. Takagi Y; Wang H; Uemura Y; Nakamura T; Yu L; Sekizawa O; Uruga T; Tada M; Samjeské G; Iwasawa Y; Yokoyama T Phys Chem Chem Phys; 2017 Feb; 19(8):6013-6021. PubMed ID: 28184398 [TBL] [Abstract][Full Text] [Related]
17. Catalytic CO oxidation on Pt under near ambient pressure: A NAP-LEEM study. Franz T; von Boehn B; Marchetto H; Borkenhagen B; Lilienkamp G; Daum W; Imbihl R Ultramicroscopy; 2019 May; 200():73-78. PubMed ID: 30836286 [TBL] [Abstract][Full Text] [Related]
18. Surface Segregation in CuNi Nanoparticle Catalysts During CO Zegkinoglou I; Pielsticker L; Han ZK; Divins NJ; Kordus D; Chen YT; Escudero C; Pérez-Dieste V; Zhu B; Gao Y; Cuenya BR J Phys Chem C Nanomater Interfaces; 2019 Apr; 123(13):8421-8428. PubMed ID: 30976377 [TBL] [Abstract][Full Text] [Related]
19. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102 [TBL] [Abstract][Full Text] [Related]
20. Catalyst Chemical State during CO Oxidation Reaction on Cu(111) Studied with Ambient-Pressure X-ray Photoelectron Spectroscopy and Near Edge X-ray Adsorption Fine Structure Spectroscopy. Eren B; Heine C; Bluhm H; Somorjai GA; Salmeron M J Am Chem Soc; 2015 Sep; 137(34):11186-90. PubMed ID: 26275662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]