These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29577139)

  • 21. A role of HNO3 on transparent conducting film with single-walled carbon nanotubes.
    Shin DW; Lee JH; Kim YH; Yu SM; Park SY; Yoo JB
    Nanotechnology; 2009 Nov; 20(47):475703. PubMed ID: 19858556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature-dependent water solubility of iodine-doped single-walled carbon nanotubes prepared using an electrochemical method.
    Song H; Ishii Y; Al-Zubaidi A; Sakai T; Kawasaki S
    Phys Chem Chem Phys; 2013 Apr; 15(16):5767-70. PubMed ID: 23512160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping.
    Kim KK; Bae JJ; Park HK; Kim SM; Geng HZ; Park KA; Shin HJ; Yoon SM; Benayad A; Choi JY; Lee YH
    J Am Chem Soc; 2008 Sep; 130(38):12757-61. PubMed ID: 18729358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective and Scalable Chemical Removal of Thin Single-Walled Carbon Nanotubes from their Mixtures with Double-Walled Carbon Nanotubes.
    Komínková Z; Valeš V; Kalbáč M
    Chemistry; 2015 Nov; 21(45):16147-53. PubMed ID: 26358882
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes.
    Yanagi K; Okada R; Ichinose Y; Yomogida Y; Katsutani F; Gao W; Kono J
    Nat Commun; 2018 Mar; 9(1):1121. PubMed ID: 29549341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Doping of C70 fullerene peapods with lithium vapor: Raman spectroscopic and Raman spectroelectrochemical studies.
    Kalbáč M; Vales V; Kavan L; Dunsch L
    Nanotechnology; 2014 Dec; 25(48):485706. PubMed ID: 25397777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption.
    Shim M; Ozel T; Gaur A; Wang C
    J Am Chem Soc; 2006 Jun; 128(23):7522-30. PubMed ID: 16756307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tip-enhanced near-field optical microscopy of carbon nanotubes.
    Hartschuh A; Qian H; Georgi C; Böhmler M; Novotny L
    Anal Bioanal Chem; 2009 Aug; 394(7):1787-95. PubMed ID: 19455312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localized Charges Control Exciton Energetics and Energy Dissipation in Doped Carbon Nanotubes.
    Eckstein KH; Hartleb H; Achsnich MM; Schöppler F; Hertel T
    ACS Nano; 2017 Oct; 11(10):10401-10408. PubMed ID: 28881133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Universal nature of collective plasmonic excitations in finite 1D carbon-based nanostructures.
    Polizzi E; Yngvesson SK
    Nanotechnology; 2015 Aug; 26(32):325201. PubMed ID: 26202877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective etching of thin single-walled carbon nanotubes.
    Kalbác M; Kavan L; Dunsch L
    J Am Chem Soc; 2009 Apr; 131(12):4529-34. PubMed ID: 19317509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal conversion of electronic and electrical properties of AuCl3-doped single-walled carbon nanotubes.
    Yoon SM; Kim UJ; Benayad A; Lee IH; Son H; Shin HJ; Choi WM; Lee YH; Jin YW; Lee EH; Lee SY; Choi JY; Kim JM
    ACS Nano; 2011 Feb; 5(2):1353-9. PubMed ID: 21261295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionic liquid for in situ Vis/NIR and Raman spectroelectrochemistry: Doping of carbon nanostructures.
    Kavan L; Dunsch L
    Chemphyschem; 2003 Sep; 4(9):944-50. PubMed ID: 14562439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of N-doping of single-walled carbon nanotubes on bioelectrocatalysis of laccase.
    Tominaga M; Togami M; Tsushida M; Kawai D
    Anal Chem; 2014 May; 86(10):5053-60. PubMed ID: 24745930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube.
    Martín-Moreno L; de Abajo FJ; García-Vidal FJ
    Phys Rev Lett; 2015 Oct; 115(17):173601. PubMed ID: 26551115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charge manipulation in molecules encapsulated inside single-wall carbon nanotubes.
    Yanagi K; Moriya R; Cuong NT; Otani M; Okada S
    Phys Rev Lett; 2013 Feb; 110(8):086801. PubMed ID: 23473183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of graphene plasmons in graphene-MoS
    Liu R; Liao B; Guo X; Hu D; Hu H; Du L; Yu H; Zhang G; Yang X; Dai Q
    Nanoscale; 2017 Jan; 9(1):208-215. PubMed ID: 27906405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Semi-conducting single-walled carbon nanotubes are detrimental when compared to metallic single-walled carbon nanotubes for electrochemical applications.
    Dong Q; Nasir MZM; Pumera M
    Phys Chem Chem Phys; 2017 Oct; 19(40):27320-27325. PubMed ID: 28971187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voltage-activated transport of ions through single-walled carbon nanotubes.
    Yazda K; Tahir S; Michel T; Loubet B; Manghi M; Bentin J; Picaud F; Palmeri J; Henn F; Jourdain V
    Nanoscale; 2017 Aug; 9(33):11976-11986. PubMed ID: 28792055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.