These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29577139)

  • 41. Atomic layer deposition of high-k dielectrics on single-walled carbon nanotubes: a Raman study.
    Liyanage LS; Cott DJ; Delabie A; Van Elshocht S; Bao Z; Wong HS
    Nanotechnology; 2013 Jun; 24(24):245703. PubMed ID: 23696347
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition.
    Yu B; Liu C; Hou PX; Tian Y; Li S; Liu B; Li F; Kauppinen EI; Cheng HM
    J Am Chem Soc; 2011 Apr; 133(14):5232-5. PubMed ID: 21410172
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stable p-type properties of single walled carbon nanotubes by electrochemical doping.
    Park CS; Lee CJ; Kim EK
    Phys Chem Chem Phys; 2015 Jul; 17(25):16243-5. PubMed ID: 26054834
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nonlinear optical properties of boron doped single-walled carbon nanotubes.
    Anand B; Podila R; Ayala P; Oliveira L; Philip R; Sai SS; Zakhidov AA; Rao AM
    Nanoscale; 2013 Aug; 5(16):7271-6. PubMed ID: 23817830
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exciton dynamics in carbon nanotubes: from the Luttinger liquid to harmonic oscillators.
    Sweeney MC; Eaves JD
    Phys Rev Lett; 2014 Mar; 112(10):107402. PubMed ID: 24679327
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly Increased Flow-Induced Power Generation on Plasmonically Carbonized Single-Walled Carbon Nanotube .
    Kim J; Lee J; Kim S; Jung W
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):29877-29882. PubMed ID: 27779858
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene.
    Kharlamova MV; Sauer M; Saito T; Sato Y; Suenaga K; Pichler T; Shiozawa H
    Nanoscale; 2015 Jan; 7(4):1383-91. PubMed ID: 25503929
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tunable Low Loss 1D Surface Plasmons in InAs Nanowires.
    Zhou Y; Chen R; Wang J; Huang Y; Li M; Xing Y; Duan J; Chen J; Farrell JD; Xu HQ; Chen J
    Adv Mater; 2018 Aug; 30(35):e1802551. PubMed ID: 29992734
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DFT study of zigzag (n, 0) single-walled carbon nanotubes: (13)C NMR chemical shifts.
    Kupka T; Stachów M; Stobiński L; Kaminský J
    J Mol Graph Model; 2016 Jun; 67():14-9. PubMed ID: 27155813
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chemically Conjugated Carbon Nanotubes and Graphene for Carrier Modulation.
    Kim KK; Kim SM; Lee YH
    Acc Chem Res; 2016 Mar; 49(3):390-9. PubMed ID: 26878595
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of exciton dimensionality on spectral diffusion of single-walled carbon nanotubes.
    Ma X; Roslyak O; Wang F; Duque JG; Piryatinski A; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10613-20. PubMed ID: 25251324
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tuning of sorted double-walled carbon nanotubes by electrochemical charging.
    Kalbac M; Green AA; Hersam MC; Kavan L
    ACS Nano; 2010 Jan; 4(1):459-69. PubMed ID: 20050694
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metallic and semiconducting single-walled carbon nanotubes: differentiating individual SWCNTs by their carbon 1s spectra.
    Rossouw D; Botton GA; Najafi E; Lee V; Hitchcock AP
    ACS Nano; 2012 Dec; 6(12):10965-72. PubMed ID: 23176188
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Raman spectra of single walled carbon nanotubes at high temperatures: pretreating samples in a nitrogen atmosphere improves their thermal stability in air.
    Molina-Duarte J; Espinosa-Vega LI; Rodríguez AG; Guirado-López RA
    Phys Chem Chem Phys; 2017 Mar; 19(10):7215-7227. PubMed ID: 28233880
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemical doping of chirality-resolved carbon nanotubes.
    Kavan L; Kalbac M; Zukalova M; Dunsch L
    J Phys Chem B; 2005 Oct; 109(42):19613-9. PubMed ID: 16853536
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of KI encapsulation in single-walled carbon nanotubes by Raman and optical absorption spectroscopy.
    Ilie A; Bendall JS; Roy D; Philp E; Green ML
    J Phys Chem B; 2006 Jul; 110(28):13848-57. PubMed ID: 16836333
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bulk electrical properties of single-walled carbon nanotubes immobilized by dielectrophoresis: evidence of metallic or semiconductor behavior.
    Mureau N; Watts PC; Tison Y; Silva SR
    Electrophoresis; 2008 Jun; 29(11):2266-71. PubMed ID: 18548459
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents.
    Joo Y; Brady GJ; Arnold MS; Gopalan P
    Langmuir; 2014 Apr; 30(12):3460-6. PubMed ID: 24580418
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface-enhanced Raman scattering of single-walled carbon nanotubes on silver-coated and gold-coated filter paper.
    Niu Z; Fang Y
    J Colloid Interface Sci; 2006 Nov; 303(1):224-8. PubMed ID: 16919662
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Doping and phonon renormalization in carbon nanotubes.
    Tsang JC; Freitag M; Perebeinos V; Liu J; Avouris P
    Nat Nanotechnol; 2007 Nov; 2(11):725-30. PubMed ID: 18654413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.