These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 29577147)

  • 21. Modified Tetrathiafulvalene as an Organic Conductor for Improving Performances of Li-O
    Zhang J; Sun B; Zhao Y; Kretschmer K; Wang G
    Angew Chem Int Ed Engl; 2017 Jul; 56(29):8505-8509. PubMed ID: 28544387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust NaO2 Electrochemistry in Aprotic Na-O2 Batteries Employing Ethereal Electrolytes with a Protic Additive.
    Abate II; Thompson LE; Kim HC; Aetukuri NB
    J Phys Chem Lett; 2016 Jun; 7(12):2164-9. PubMed ID: 27214400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in understanding of the mechanism and control of Li
    Lyu Z; Zhou Y; Dai W; Cui X; Lai M; Wang L; Huo F; Huang W; Hu Z; Chen W
    Chem Soc Rev; 2017 Oct; 46(19):6046-6072. PubMed ID: 28857099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fundamental Understanding of Water-Induced Mechanisms in Li-O
    Dai A; Li Q; Liu T; Amine K; Lu J
    Adv Mater; 2019 Aug; 31(31):e1805602. PubMed ID: 30478954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultralong Cycle Life Achieved by a Natural Plant: Miscanthus × giganteus for Lithium Oxygen Batteries.
    Li S; Bi X; Tao R; Wang Q; Yao Y; Wu F; Zhang C
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4382-4390. PubMed ID: 28173702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage.
    Zhang Y; Zhang L; Lv T; Chu PK; Huo K
    ChemSusChem; 2020 Mar; 13(6):1114-1154. PubMed ID: 32150349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards Synergistic Electrode-Electrolyte Design Principles for Nonaqueous Li-O[Formula: see text] batteries.
    Khetan A; Krishnamurthy D; Viswanathan V
    Top Curr Chem (Cham); 2018 Mar; 376(2):11. PubMed ID: 29557503
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium-Oxygen Batteries.
    Asadi M; Kumar B; Liu C; Phillips P; Yasaei P; Behranginia A; Zapol P; Klie RF; Curtiss LA; Salehi-Khojin A
    ACS Nano; 2016 Feb; 10(2):2167-75. PubMed ID: 26789516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sodium-Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective.
    Yadegari H; Sun Q; Sun X
    Adv Mater; 2016 Sep; 28(33):7065-93. PubMed ID: 27258965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Status Quo on Graphene Electrode Catalysts for Improved Oxygen Reduction and Evolution Reactions in Li-Air Batteries.
    Gollavelli G; Gedda G; Mohan R; Ling YC
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries.
    Zhang J; Luan Y; Lyu Z; Wang L; Xu L; Yuan K; Pan F; Lai M; Liu Z; Chen W
    Nanoscale; 2015 Sep; 7(36):14881-8. PubMed ID: 26290962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Commercialization-Driven Electrodes Design for Lithium Batteries: Basic Guidance, Opportunities, and Perspectives.
    Cao C; Liang F; Zhang W; Liu H; Liu H; Zhang H; Mao J; Zhang Y; Feng Y; Yao X; Ge M; Tang Y
    Small; 2021 Oct; 17(43):e2102233. PubMed ID: 34350695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New Application of Waste Citrus Maxima Peel-Derived Carbon as an Oxygen Electrode Material for Lithium Oxygen Batteries.
    Li D; Wang Q; Yao Y; Wu F; Yu Y; Zhang C
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32058-32066. PubMed ID: 30141898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Promoting Li-O
    Shen X; Zhang S; Wu Y; Chen Y
    ChemSusChem; 2019 Jan; 12(1):104-114. PubMed ID: 30444048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety.
    Yi J; Zhou H
    ChemSusChem; 2016 Sep; 9(17):2391-6. PubMed ID: 27487523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergistic oxygen reduction of dual redox catalysts boosting the power of lithium-air battery.
    Zhu YG; Goh FWT; Yan R; Wu S; Adams S; Wang Q
    Phys Chem Chem Phys; 2018 Nov; 20(44):27930-27936. PubMed ID: 30379163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of Discharge Side Reactions by Promoting Solution-Mediated Oxygen Reduction Reaction with Stable Quinone in Li-O
    Liu X; Zhang P; Liu L; Feng J; He X; Song X; Han Q; Wang H; Peng Z; Zhao Y
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10607-10615. PubMed ID: 32031771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes.
    Bhatt MD; O'Dwyer C
    Phys Chem Chem Phys; 2015 Feb; 17(7):4799-844. PubMed ID: 25613366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.