These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 29577158)
1. Determination of accurate backbone chemical shift tensors in microcrystalline proteins by integrating MAS NMR and QM/MM. Fritz M; Quinn CM; Wang M; Hou G; Lu X; Koharudin LMI; Struppe J; Case DA; Polenova T; Gronenborn AM Phys Chem Chem Phys; 2018 Apr; 20(14):9543-9553. PubMed ID: 29577158 [TBL] [Abstract][Full Text] [Related]
2. Toward Closing the Gap: Quantum Mechanical Calculations and Experimentally Measured Chemical Shifts of a Microcrystalline Lectin. Fritz M; Quinn CM; Wang M; Hou G; Lu X; Koharudin LMI; Polenova T; Gronenborn AM J Phys Chem B; 2017 Apr; 121(15):3574-3585. PubMed ID: 28001418 [TBL] [Abstract][Full Text] [Related]
3. Accurate Backbone Kraus J; Gupta R; Lu M; Gronenborn AM; Akke M; Polenova T Chemphyschem; 2020 Jul; 21(13):1436-1443. PubMed ID: 32363727 [TBL] [Abstract][Full Text] [Related]
4. Chemical Shifts of the Carbohydrate Binding Domain of Galectin-3 from Magic Angle Spinning NMR and Hybrid Quantum Mechanics/Molecular Mechanics Calculations. Kraus J; Gupta R; Yehl J; Lu M; Case DA; Gronenborn AM; Akke M; Polenova T J Phys Chem B; 2018 Mar; 122(11):2931-2939. PubMed ID: 29498857 [TBL] [Abstract][Full Text] [Related]
5. 51V NMR chemical shifts calculated from QM/MM models of vanadium chloroperoxidase. Waller MP; Bühl M; Geethalakshmi KR; Wang D; Thiel W Chemistry; 2007; 13(17):4723-32. PubMed ID: 17440907 [TBL] [Abstract][Full Text] [Related]
6. Probing local structure in zeolite frameworks: ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite 29Si magnetic shielding tensors. Brouwer DH; Enright GD J Am Chem Soc; 2008 Mar; 130(10):3095-105. PubMed ID: 18281985 [TBL] [Abstract][Full Text] [Related]
7. Fragment quantum mechanical calculation of proteins and its applications. He X; Zhu T; Wang X; Liu J; Zhang JZ Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673 [TBL] [Abstract][Full Text] [Related]
8. Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach. He X; Wang B; Merz KM J Phys Chem B; 2009 Jul; 113(30):10380-8. PubMed ID: 19575540 [TBL] [Abstract][Full Text] [Related]
9. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics. Christensen AS; Linnet TE; Borg M; Boomsma W; Lindorff-Larsen K; Hamelryck T; Jensen JH PLoS One; 2013; 8(12):e84123. PubMed ID: 24391900 [TBL] [Abstract][Full Text] [Related]
10. Influence of N-H...O and C-H...O hydrogen bonds on the 17O NMR tensors in crystalline uracil: computational study. Ida R; De Clerk M; Wu G J Phys Chem A; 2006 Jan; 110(3):1065-71. PubMed ID: 16420009 [TBL] [Abstract][Full Text] [Related]
11. Automated Fragmentation Quantum Mechanical Calculation of Zhang J; Kriebel CN; Wan Z; Shi M; Glaubitz C; He X J Chem Theory Comput; 2023 Oct; 19(20):7405-7422. PubMed ID: 37788419 [TBL] [Abstract][Full Text] [Related]
12. Density functional theory investigation of hydrogen bonding effects on the oxygen, nitrogen and hydrogen electric field gradient and chemical shielding tensors of anhydrous chitosan crystalline structure. Esrafili MD; Elmi F; Hadipour NL J Phys Chem A; 2007 Feb; 111(5):963-70. PubMed ID: 17266238 [TBL] [Abstract][Full Text] [Related]
13. Investigation of backbone dynamics and local geometry of bio-molecules using calculated NMR chemical shifts and anisotropies. Sternberg U; Witter R J Biomol NMR; 2019 Dec; 73(12):727-741. PubMed ID: 31646420 [TBL] [Abstract][Full Text] [Related]
14. A high-field solid-state 35/37Cl NMR and quantum chemical investigation of the chlorine quadrupolar and chemical shift tensors in amino acid hydrochlorides. Chapman RP; Bryce DL Phys Chem Chem Phys; 2007 Dec; 9(47):6219-30. PubMed ID: 18046471 [TBL] [Abstract][Full Text] [Related]
15. Ultrahigh resolution protein structures using NMR chemical shift tensors. Wylie BJ; Sperling LJ; Nieuwkoop AJ; Franks WT; Oldfield E; Rienstra CM Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16974-9. PubMed ID: 21969532 [TBL] [Abstract][Full Text] [Related]
16. Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N-15N and carbonyl 13C-13C dipolar recoupling data. Hu KN; Qiang W; Bermejo GA; Schwieters CD; Tycko R J Magn Reson; 2012 May; 218():115-27. PubMed ID: 22449573 [TBL] [Abstract][Full Text] [Related]
17. Influence of N-H...O and O-H...O hydrogen bonds on the (17)O, (15)N and (13)C chemical shielding tensors in crystalline acetaminophen: a density functional theory study. Esrafili MD; Behzadi H; Hadipour NL Biophys Chem; 2007 Jun; 128(1):38-45. PubMed ID: 17418477 [TBL] [Abstract][Full Text] [Related]
18. Multidimensional magic angle spinning NMR spectroscopy for site-resolved measurement of proton chemical shift anisotropy in biological solids. Hou G; Paramasivam S; Yan S; Polenova T; Vega AJ J Am Chem Soc; 2013 Jan; 135(4):1358-68. PubMed ID: 23286322 [TBL] [Abstract][Full Text] [Related]
19. 31P chemical shift tensors for canonical and non-canonical conformations of nucleic acids: a DFT study and NMR implications. Precechtelová J; Padrta P; Munzarová ML; Sklenár V J Phys Chem B; 2008 Mar; 112(11):3470-8. PubMed ID: 18298109 [TBL] [Abstract][Full Text] [Related]
20. Chemical shifts in amino acids, peptides, and proteins: from quantum chemistry to drug design. Oldfield E Annu Rev Phys Chem; 2002; 53():349-78. PubMed ID: 11972012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]