These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29577472)

  • 1. Polypyridyl Metallo-Organic Assemblies for Electrochromic Applications.
    Lahav M; van der Boom ME
    Adv Mater; 2018 Oct; 30(41):e1706641. PubMed ID: 29577472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochromic Metallo-Organic Nanoscale Films: Fabrication, Color Range, and Devices.
    Elool Dov N; Shankar S; Cohen D; Bendikov T; Rechav K; Shimon LJW; Lahav M; van der Boom ME
    J Am Chem Soc; 2017 Aug; 139(33):11471-11481. PubMed ID: 28702992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viologen-based solution-processable ionic porous polymers for electrochromic applications.
    Miao H; Chen L; Xing F; Li H; Baumgartner T; He X
    Chem Sci; 2024 May; 15(20):7576-7585. PubMed ID: 38784736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bis(terpyridine) Iron(II) Functionalized Vertically-Oriented Nanostructured Silica Films: Toward Electrochromic Materials.
    Vilà N; Walcarius A
    Front Chem; 2020; 8():830. PubMed ID: 33094099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast-Switching Vis-IR Electrochromic Covalent Organic Frameworks.
    Bessinger D; Muggli K; Beetz M; Auras F; Bein T
    J Am Chem Soc; 2021 May; 143(19):7351-7357. PubMed ID: 33724793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Temperature Thermally Annealed Niobium Oxide Thin Films as a Minimally Color Changing Ion Storage Layer in Solution-Processed Polymer Electrochromic Devices.
    He J; You L; Tran DT; Mei J
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4169-4177. PubMed ID: 30608143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Stable and Rapid Switching Electrochromic Thin Films Based on Metal-Organic Frameworks with Redox-Active Triphenylamine Ligands.
    Liu J; Daphne Ma XY; Wang Z; Xu L; Xu T; He C; Wang F; Lu X
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7442-7450. PubMed ID: 31958011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-Sided Electrochromic Device Based on Metal-Organic Frameworks.
    Mjejri I; Doherty CM; Rubio-Martinez M; Drisko GL; Rougier A
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):39930-39934. PubMed ID: 29043775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost-Effective, Flexible, and Colorful Dynamic Displays: Removing Underlying Conducting Layers from Polymer-Based Electrochromic Devices.
    Howard EL; Österholm AM; Shen DE; Panchumarti LP; Pinheiro C; Reynolds JR
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16732-16743. PubMed ID: 33788540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micropatterned Poly(3,4-ethylenedioxythiophene) Thin Films with Improved Color-Switching Rates and Coloration Efficiency.
    Lin CL; Cheng TL; Wu NJ
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyridine coordination chemistry for molecular assemblies on surfaces.
    de Ruiter G; Lahav M; van der Boom ME
    Acc Chem Res; 2014 Dec; 47(12):3407-16. PubMed ID: 25350402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From waste carbonated beverages to high performance electrochromic devices: a green and low-cost synthetic method for self-doped metal oxides.
    Wu L; Fang H; Jing K; Yu H; Shan Z
    Nanoscale; 2023 Nov; 15(43):17455-17463. PubMed ID: 37859603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Electrochromic Devices Based on Poly[Ni(salen)]-Type Polymer Films.
    Nunes M; Araújo M; Fonseca J; Moura C; Hillman R; Freire C
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14231-43. PubMed ID: 27175794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochromic Sensors Based on Conducting Polymers, Metal Oxides, and Coordination Complexes.
    Celiesiute R; Ramanaviciene A; Gicevicius M; Ramanavicius A
    Crit Rev Anal Chem; 2019; 49(3):195-208. PubMed ID: 30285474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printed Multicolor High-Contrast Electrochromic Devices.
    Chen BH; Kao SY; Hu CW; Higuchi M; Ho KC; Liao YC
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25069-76. PubMed ID: 26496422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Greyscale and Paper Electrochromic Polymer Displays by UV Patterning.
    Brooke R; Edberg J; Crispin X; Berggren M; Engquist I; Jonsson MP
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-Surface Self-Assembly of Stimuli-Responsive Metallo-Organic Films: Automated Ultrasonic Spray-Coating and Electrochromic Devices.
    Malik N; Elool Dov N; de Ruiter G; Lahav M; van der Boom ME
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22858-22868. PubMed ID: 31117463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathway-Dependent Coordination Networks: Crystals versus Films.
    Malik N; Singh V; Shimon LJW; Houben L; Lahav M; van der Boom ME
    J Am Chem Soc; 2021 Oct; 143(41):16913-16918. PubMed ID: 34617735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochromic functions of organic-metallic hybrid polymers.
    Higuchi M
    J Nanosci Nanotechnol; 2009 Jan; 9(1):51-8. PubMed ID: 19441278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Brief Overview of Electrochromic Materials and Related Devices: A Nanostructured Materials Perspective.
    Shchegolkov AV; Jang SH; Shchegolkov AV; Rodionov YV; Sukhova AO; Lipkin MS
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.