BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29577475)

  • 1. Selectable high-yield recombinant protein production in human cells using a GFP/YFP nanobody affinity support.
    Schellenberg MJ; Petrovich RM; Malone CC; Williams RS
    Protein Sci; 2018 Jun; 27(6):1083-1092. PubMed ID: 29577475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-efficiency recombinant protein purification using mCherry and YFP nanobody affinity matrices.
    Cong ATQ; Witter TL; Schellenberg MJ
    Protein Sci; 2022 Sep; 31(9):e4383. PubMed ID: 36040252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity.
    Wendel S; Fischer EC; Martínez V; Seppälä S; Nørholm MH
    Microb Cell Fact; 2016 May; 15():71. PubMed ID: 27142225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag.
    Huet S; Gorre H; Perrocheau A; Picot J; Cinier M
    PLoS One; 2015; 10(11):e0142304. PubMed ID: 26539718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification of recombinant proteins with a multifunctional GFP tag.
    Murayama T; Kobayashi T
    Methods Mol Biol; 2014; 1177():151-61. PubMed ID: 24943321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based engineering of anti-GFP nanobody tandems as ultra-high-affinity reagents for purification.
    Zhang Z; Wang Y; Ding Y; Hattori M
    Sci Rep; 2020 Apr; 10(1):6239. PubMed ID: 32277083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence-detection size-exclusion chromatography utilizing nanobody technology for expression screening of membrane proteins.
    Jin F; Shen C; Wang Y; Wang M; Sun M; Hattori M
    Commun Biol; 2021 Mar; 4(1):366. PubMed ID: 33742097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Camelid reporter gene imaging: a generic method for in vivo cell tracking.
    Goethals LR; Bos TJ; Baeyens L; De Geeter F; Devoogdt N; Lahoutte T
    EJNMMI Res; 2014; 4():32. PubMed ID: 25024930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and thermodynamic analysis of the GFP:GFP-nanobody complex.
    Kubala MH; Kovtun O; Alexandrov K; Collins BM
    Protein Sci; 2010 Dec; 19(12):2389-401. PubMed ID: 20945358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Yield Expression of Recombinant Human Proteins with the Transient Transfection of HEK293 Cells in Suspension.
    Subedi GP; Johnson RW; Moniz HA; Moremen KW; Barb AW
    J Vis Exp; 2015 Dec; (106):e53568. PubMed ID: 26779721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemogenetic Control of Nanobodies.
    Farrants H; Tarnawski M; Müller TG; Otsuka S; Hiblot J; Koch B; Kueblbeck M; Kräusslich HG; Ellenberg J; Johnsson K
    Nat Methods; 2020 Mar; 17(3):279-282. PubMed ID: 32066961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of the green fluorescent protein variant (YFP) to monitor MetArg human proinsulin production in Escherichia coli.
    Daabrowski S; Brillowska A; Kur J
    Protein Expr Purif; 1999 Jul; 16(2):315-23. PubMed ID: 10419827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Construction of recombinant adenovirus vector pAdxsi-green fluorescent protein-homo sapiens NEL-like 1 and transfected into rat bone marrow mesenchymal stem cells].
    Xue J; Peng J; Zhang L; Liu S; Chen J; Wang A; Yuan M; Xu W; Lu S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 May; 24(5):606-12. PubMed ID: 20540270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The NT11, a novel fusion tag for enhancing protein expression in Escherichia coli.
    Nguyen TKM; Ki MR; Son RG; Pack SP
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2205-2216. PubMed ID: 30610290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient expression of codon-adapted affinity tagged super folder green fluorescent protein for synchronous protein localization and affinity purification studies in Tetrahymena thermophila.
    Yilmaz G; Arslanyolu M
    BMC Biotechnol; 2015 Mar; 15():22. PubMed ID: 25887423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Architectures of multisubunit complexes revealed by a visible immunoprecipitation assay using fluorescent fusion proteins.
    Katoh Y; Nozaki S; Hartanto D; Miyano R; Nakayama K
    J Cell Sci; 2015 Jun; 128(12):2351-62. PubMed ID: 25964651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterning protein complexes on DNA nanostructures using a GFP nanobody.
    Sommese RF; Hariadi RF; Kim K; Liu M; Tyska MJ; Sivaramakrishnan S
    Protein Sci; 2016 Nov; 25(11):2089-2094. PubMed ID: 27538185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying bimolecular fluorescence complementation to screen and purify aquaporin protein:protein complexes.
    Sjöhamn J; Båth P; Neutze R; Hedfalk K
    Protein Sci; 2016 Dec; 25(12):2196-2208. PubMed ID: 27643892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.