These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 29577584)
1. Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres. Ishikawa K; Arifta TI; Hayashi K; Tsuru K J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):269-277. PubMed ID: 29577584 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of carbonate apatite honeycomb and its tissue response. Ishikawa K; Munar ML; Tsuru K; Miyamoto Y J Biomed Mater Res A; 2019 May; 107(5):1014-1020. PubMed ID: 30706693 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of porous carbonate apatite granules using microfiber and its histological evaluations in rabbit calvarial bone defects. Akita K; Fukuda N; Kamada K; Kudoh K; Kurio N; Tsuru K; Ishikawa K; Miyamoto Y J Biomed Mater Res A; 2020 Mar; 108(3):709-721. PubMed ID: 31756282 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and evaluation of carbonate apatite-coated calcium carbonate bone substitutes for bone tissue engineering. Fujioka-Kobayashi M; Tsuru K; Nagai H; Fujisawa K; Kudoh T; Ohe G; Ishikawa K; Miyamoto Y J Tissue Eng Regen Med; 2018 Oct; 12(10):2077-2087. PubMed ID: 30058260 [TBL] [Abstract][Full Text] [Related]
5. Bone regeneration using β-tricalcium phosphate (β-TCP) block with interconnected pores made by setting reaction of β-TCP granules. Putri TS; Hayashi K; Ishikawa K J Biomed Mater Res A; 2020 Mar; 108(3):625-632. PubMed ID: 31742920 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of interconnected porous β-tricalcium phosphate (β-TCP) based on a setting reaction of β-TCP granules with HNO Ishikawa K; Putri TS; Tsuchiya A; Tanaka K; Tsuru K J Biomed Mater Res A; 2018 Mar; 106(3):797-804. PubMed ID: 29105999 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and histological evaluation of ant-nest type porous carbonate apatite artificial bone using polyurethane foam as a porogen. Tan JLT; Shimabukuro M; Kishida R; Ishikawa K J Biomed Mater Res B Appl Biomater; 2023 Mar; 111(3):560-567. PubMed ID: 36205010 [TBL] [Abstract][Full Text] [Related]
8. Comparison of periodontal wound healing/regeneration by recombinant human fibroblast growth factor-2 combined with β-tricalcium phosphate, carbonate apatite, or deproteinized bovine bone mineral in a canine one-wall intra-bony defect model. Shirakata Y; Setoguchi F; Sena K; Nakamura T; Imafuji T; Shinohara Y; Iwata M; Noguchi K J Clin Periodontol; 2022 Jun; 49(6):599-608. PubMed ID: 35322457 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of self-setting β-tricalcium phosphate granular cement. Fukuda N; Tsuru K; Mori Y; Ishikawa K J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):800-807. PubMed ID: 28370963 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration. He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of carbonate apatite blocks fabricated from dicalcium phosphate dihydrate blocks for reconstruction of rabbit femoral and tibial defects. Kanazawa M; Tsuru K; Fukuda N; Sakemi Y; Nakashima Y; Ishikawa K J Mater Sci Mater Med; 2017 Jun; 28(6):85. PubMed ID: 28456893 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of interconnected porous calcite by bridging calcite granules with dicalcium phosphate dihydrate and their histological evaluation. Ishikawa K; Koga N; Tsuru K; Takahashi I J Biomed Mater Res A; 2016 Mar; 104(3):652-658. PubMed ID: 26509820 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and histological evaluation of porous carbonate apatite blocks using disodium hydrogen phosphate crystals as a porogen and phosphatization accelerator. Freitas P; Kishida R; Hayashi K; Tsuchiya A; Shimabukuro M; Ishikawa K J Biomed Mater Res A; 2022 Jun; 110(6):1278-1290. PubMed ID: 35194936 [TBL] [Abstract][Full Text] [Related]
14. The controlled resorption of porous alpha-tricalcium phosphate using a hydroxypropylcellulose coating. Kitamura M; Ohtsuki C; Iwasaki H; Ogata S; Tanihara M; Miyazaki T J Mater Sci Mater Med; 2004 Oct; 15(10):1153-8. PubMed ID: 15516878 [TBL] [Abstract][Full Text] [Related]
15. Comparing the osteoconductive potential between tubular and cylindrical beta-tricalcium phosphate scaffolds: An experimental study in rats. Sun YX; Zhang JF; Li DJ; Wu XM; Xu LL; Pan XH; Li G J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1934-1940. PubMed ID: 28960835 [TBL] [Abstract][Full Text] [Related]
16. Effect of resorption rate and osteoconductivity of biodegradable calcium phosphate materials on the acquisition of natural bone strength in the repaired bone. Chiba S; Anada T; Suzuki K; Saito K; Shiwaku Y; Miyatake N; Baba K; Imaizumi H; Hosaka M; Itoi E; Suzuki O J Biomed Mater Res A; 2016 Nov; 104(11):2833-42. PubMed ID: 27391056 [TBL] [Abstract][Full Text] [Related]
17. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone. Bang LT; Ramesh S; Purbolaksono J; Long BD; Chandran H; Ramesh S; Othman R Biomed Mater; 2015 Jul; 10(4):045011. PubMed ID: 26225725 [TBL] [Abstract][Full Text] [Related]
18. Bone regeneration in rabbit calvarial critical-sized defects filled with composite in situ formed xenogenic dentin and biphasic tricalcium phosphate/hyroxyapatite mixture. Kamal M; Andersson L; Al-Asfour A; Bartella AK; Gremse F; Rosenhain S; Gabato S; Hölzle F; Kessler P; Lethaus B J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):773-782. PubMed ID: 30253039 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of chelate-setting α-tricalcium phosphate cement using sodium citrate and sodium alginate as mixing solution and its in vivo osteoconductivity. Konishi T; Lim PN; Honda M; Nagaya M; Nagashima H; Thian ES; Aizawa M J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2361-2370. PubMed ID: 29149487 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of low-crystalline carbonate apatite foam bone replacement based on phase transformation of calcite foam. Maruta M; Matsuya S; Nakamura S; Ishikawa K Dent Mater J; 2011; 30(1):14-20. PubMed ID: 21282893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]