These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 29577621)

  • 61. Controllable Modulation of Defects for Layered Double Hydroxide Nanosheets by Altering Intercalation Anions for Efficient Electrooxidation Catalysis.
    Lai T; Wang J; Sun X; Zhao Y; Song YF
    Chem Asian J; 2021 Dec; 16(23):3993-3998. PubMed ID: 34636154
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Thin NiFeCr-LDHs nanosheets promoted by g-C
    Chen G; Liu J; Li Y; Anand P; Wu W; Chen Y; Xu C
    Nanotechnology; 2019 Dec; 30(49):494001. PubMed ID: 31443099
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Accelerating charge transfer at an ultrafine NiFe-LDHs/CB interface during the electrocatalyst activation process for water oxidation.
    Cai M; Liu Q; Zhao Y; Wang Z; Li Y; Li G
    Dalton Trans; 2020 Jun; 49(22):7436-7443. PubMed ID: 32432241
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structural Reconstruction Strategy Enables CoFe LDHs for High-Capacity NH
    Wang D; Sun J; Chen L
    ChemSusChem; 2023 Jun; 16(12):e202300207. PubMed ID: 37000428
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of Synthetic Methodology on the Physicochemical Attributes and Electrocatalytic Activity of NiAl-LDHs for the Oxygen Evolution Reaction.
    Hanif A; Khan MY; Ehsan MA; Helal A; Abdul Aziz M; Khan A
    Chem Asian J; 2023 Aug; ():e202300625. PubMed ID: 37609855
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water.
    Ma W; Ma R; Wang C; Liang J; Liu X; Zhou K; Sasaki T
    ACS Nano; 2015 Feb; 9(2):1977-84. PubMed ID: 25605063
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Pseudocapacitive Ni-Co-Fe Hydroxides/N-Doped Carbon Nanoplates-Based Electrocatalyst for Efficient Oxygen Evolution.
    Liu WJ; Hu X; Li HC; Yu HQ
    Small; 2018 Aug; 14(34):e1801878. PubMed ID: 30063288
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Interface engineering triggered by carbon nanotube-supported multiple sulfides for boosting oxygen evolution.
    Chen M; Hu Y; Liang K; Zhao Z; Luo Y; Luo S; Ma J
    Nanoscale; 2021 Nov; 13(44):18763-18772. PubMed ID: 34747966
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Topotactic transition of α-Co(OH)
    Kundu S; Malik B; Prabhakaran A; Pattanayak DK; Pillai VK
    Chem Commun (Camb); 2017 Aug; 53(70):9809-9812. PubMed ID: 28820532
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Tuning Co
    Zheng Y; Gao R; Qiu Y; Zheng L; Hu Z; Liu X
    Inorg Chem; 2021 Apr; 60(7):5252-5263. PubMed ID: 33724012
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Interfacial Evolution on Co-based Oxygen Evolution Reaction Electrocatalysts Probed by Using
    Hu Y; Hu C; Du A; Xiao T; Yu L; Yang C; Xie W
    Anal Chem; 2023 Jan; 95(2):1703-1709. PubMed ID: 36583685
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly.
    Zhou D; Li P; Lin X; McKinley A; Kuang Y; Liu W; Lin WF; Sun X; Duan X
    Chem Soc Rev; 2021 Aug; 50(15):8790-8817. PubMed ID: 34160484
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Integration of Semiconductor Oxide and a Microporous (3,10)-Connected Co
    Tian JW; Wu YP; Li YS; Wei JH; Yi JW; Li S; Zhao J; Li DS
    Inorg Chem; 2019 May; 58(9):5837-5843. PubMed ID: 30995020
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Accelerating oxygen evolution electrocatalysis of two-dimensional NiFe layered double hydroxide nanosheets via space-confined amorphization.
    Jiao S; Yao Z; Li M; Mu C; Liang H; Zeng YJ; Huang H
    Nanoscale; 2019 Oct; 11(40):18894-18899. PubMed ID: 31596308
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synergistic Activity of Co and Fe in Amorphous Cox-Fe-B Catalyst for Efficient Oxygen Evolution Reaction.
    Chen H; Ouyang S; Zhao M; Li Y; Ye J
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40333-40343. PubMed ID: 29111638
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In Situ Antisolvent Approach to Hydrangea-like HCo
    Zhang H; Tong Y; Xu J; Lu Q; Gao F
    Chemistry; 2018 Jan; 24(2):400-408. PubMed ID: 28950042
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Metal-Organic Framework-Derived Nickel-Cobalt Sulfide on Ultrathin Mxene Nanosheets for Electrocatalytic Oxygen Evolution.
    Zou H; He B; Kuang P; Yu J; Fan K
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22311-22319. PubMed ID: 29888588
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electrodeposited Amorphous Tungsten-doped Cobalt Oxide as an Efficient Catalyst for the Oxygen Evolution Reaction.
    Nguyen LN; Thuy UTD; Truong QD; Honma I; Nguyen QL; Tran PD
    Chem Asian J; 2018 Jun; 13(12):1530-1534. PubMed ID: 29708656
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides: direct electrochemistry and hydrogen peroxide sensing.
    Wang Y; Wang Z; Rui Y; Li M
    Biosens Bioelectron; 2015 Feb; 64():57-62. PubMed ID: 25194796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.