BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29577678)

  • 1. Integrin Clustering Matters: A Review of Biomaterials Functionalized with Multivalent Integrin-Binding Ligands to Improve Cell Adhesion, Migration, Differentiation, Angiogenesis, and Biomedical Device Integration.
    Karimi F; O'Connor AJ; Qiao GG; Heath DE
    Adv Healthc Mater; 2018 Jun; 7(12):e1701324. PubMed ID: 29577678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of protein-engineered fabrics to identify design rules for integrin ligand clustering in biomaterials.
    Benitez PL; Mascharak S; Proctor AC; Heilshorn SC
    Integr Biol (Camb); 2016 Jan; 8(1):50-61. PubMed ID: 26692238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond RGD; nanoclusters of syndecan- and integrin-binding ligands synergistically enhance cell/material interactions.
    Karimi F; Thombare VJ; Hutton CA; O'Connor AJ; Qiao GG; Heath DE
    Biomaterials; 2018 Dec; 187():81-92. PubMed ID: 30308478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrin organization: linking adhesion ligand nanopatterns with altered cell responses.
    Comisar WA; Mooney DJ; Linderman JJ
    J Theor Biol; 2011 Apr; 274(1):120-30. PubMed ID: 21255586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale tissue engineering: spatial control over cell-materials interactions.
    Wheeldon I; Farhadi A; Bick AG; Jabbari E; Khademhosseini A
    Nanotechnology; 2011 May; 22(21):212001. PubMed ID: 21451238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Potential Application of Biomaterials in Cardiac Stem Cell Therapy.
    Sahito RG; Sureshkumar P; Sotiriadou I; Srinivasan SP; Sabour D; Hescheler J; Pfannkuche K; Sachinidis A
    Curr Med Chem; 2016; 23(6):589-602. PubMed ID: 26951086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote Control of Multimodal Nanoscale Ligand Oscillations Regulates Stem Cell Adhesion and Differentiation.
    Kang H; Wong DSH; Yan X; Jung HJ; Kim S; Lin S; Wei K; Li G; Dravid VP; Bian L
    ACS Nano; 2017 Oct; 11(10):9636-9649. PubMed ID: 28841292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivalent integrin-specific ligands enhance tissue healing and biomaterial integration.
    Petrie TA; Raynor JE; Dumbauld DW; Lee TT; Jagtap S; Templeman KL; Collard DM; García AJ
    Sci Transl Med; 2010 Aug; 2(45):45ra60. PubMed ID: 20720217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography.
    Lim JY; Dreiss AD; Zhou Z; Hansen JC; Siedlecki CA; Hengstebeck RW; Cheng J; Winograd N; Donahue HJ
    Biomaterials; 2007 Apr; 28(10):1787-97. PubMed ID: 17218005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of Integrin-Targeting Biomaterials in Tissue Engineering.
    Dhavalikar P; Robinson A; Lan Z; Jenkins D; Chwatko M; Salhadar K; Jose A; Kar R; Shoga E; Kannapiran A; Cosgriff-Hernandez E
    Adv Healthc Mater; 2020 Dec; 9(23):e2000795. PubMed ID: 32940020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity.
    Dave K; Gomes VG
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110078. PubMed ID: 31546353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.
    Lutolf MP; Hubbell JA
    Nat Biotechnol; 2005 Jan; 23(1):47-55. PubMed ID: 15637621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype.
    Di Cio S; Gautrot JE
    Acta Biomater; 2016 Jan; 30():26-48. PubMed ID: 26596568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured biomaterials for tissue engineered bone tissue reconstruction.
    Chiara G; Letizia F; Lorenzo F; Edoardo S; Diego S; Stefano S; Eriberto B; Barbara Z
    Int J Mol Sci; 2012; 13(1):737-757. PubMed ID: 22312283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomaterials functionalized with nanoclusters of integrin- and syndecan-binding ligands improve cell adhesion and mechanosensing under shear flow conditions.
    Karimi F; Thombare VJ; Hutton CA; O'Connor AJ; Qiao GG; Heath DE
    J Biomed Mater Res A; 2021 Mar; 109(3):313-325. PubMed ID: 32490581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair.
    Shafiq M; Jung Y; Kim SH
    Biomaterials; 2016 Jun; 90():85-115. PubMed ID: 27016619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanochemical mechanism of integrin clustering modulated by nanoscale ligand spacing and rigidity of extracellular substrates.
    Yu J; Huang J; Jansen JA; Xiong C; Walboomers XF
    J Mech Behav Biomed Mater; 2017 Aug; 72():29-37. PubMed ID: 28448919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using carbohydrate-based biomaterials as scaffolds to control human stem cell fate.
    Hu J; Seeberger PH; Yin J
    Org Biomol Chem; 2016 Oct; 14(37):8648-58. PubMed ID: 27530157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactive peptide-modified biomaterials for bone regeneration.
    Lee JY; Choi YS; Lee SJ; Chung CP; Park YJ
    Curr Pharm Des; 2011; 17(25):2663-76. PubMed ID: 21728982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.