These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 29577729)

  • 1. Toward Semistructural Cellulose Nanocomposites: The Need for Scalable Processing and Interface Tailoring.
    Ansari F; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):2341-2350. PubMed ID: 29577729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructural Effects in High Cellulose Content Thermoplastic Nanocomposites with a Covalently Grafted Cellulose-Poly(methyl methacrylate) Interface.
    Boujemaoui A; Ansari F; Berglund LA
    Biomacromolecules; 2019 Feb; 20(2):598-607. PubMed ID: 30047261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-shell cellulose nanofibers for biocomposites - nanostructural effects in hydrated state.
    Prakobna K; Terenzi C; Zhou Q; Furó I; Berglund LA
    Carbohydr Polym; 2015 Jul; 125():92-102. PubMed ID: 25857964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Route to Transparent, Strong, and Thermally Stable Nanocellulose/Polymer Nanocomposites from an Aqueous Pickering Emulsion.
    Fujisawa S; Togawa E; Kuroda K
    Biomacromolecules; 2017 Jan; 18(1):266-271. PubMed ID: 27958712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites.
    Poyraz B; Tozluoğlu A; Candan Z; Demir A; Yavuz M
    Int J Biol Macromol; 2017 Nov; 104(Pt A):384-392. PubMed ID: 28602986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructural effects on polymer and water dynamics in cellulose biocomposites: (2)h and (13)c NMR relaxometry.
    Terenzi C; Prakobna K; Berglund LA; Furó I
    Biomacromolecules; 2015 May; 16(5):1506-15. PubMed ID: 25853702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong Reinforcement Effects in 2D Cellulose Nanofibril-Graphene Oxide (CNF-GO) Nanocomposites due to GO-Induced CNF Ordering.
    Mianehrow H; Lo Re G; Carosio F; Fina A; Larsson PT; Chen P; Berglund LA
    J Mater Chem A Mater; 2020 Sep; 8(34):17608-17620. PubMed ID: 33796318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015; 127():101-9. PubMed ID: 25965462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Admicellar Polymerization Coating of CNF Enhances Integration in Degradable Nanocomposites.
    Edlund U; Lagerberg T; Ålander E
    Biomacromolecules; 2019 Feb; 20(2):684-692. PubMed ID: 30301347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers.
    Prakobna K; Galland S; Berglund LA
    Biomacromolecules; 2015 Mar; 16(3):904-12. PubMed ID: 25650787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Performance PA 6/Cellulose Nanocomposites in the Interest of Industrial Scale Melt Processing.
    Sridhara PK; Vilaseca F
    Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34066567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eco-Friendly Cellulose Nanofibrils Designed by Nature: Effects from Preserving Native State.
    Yang X; Reid MS; Olsén P; Berglund LA
    ACS Nano; 2020 Jan; 14(1):724-735. PubMed ID: 31886646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites.
    Benítez AJ; Lossada F; Zhu B; Rudolph T; Walther A
    Biomacromolecules; 2016 Jul; 17(7):2417-26. PubMed ID: 27303948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recyclable nanocomposites of well-dispersed 2D layered silicates in cellulose nanofibril (CNF) matrix.
    Li L; Maddalena L; Nishiyama Y; Carosio F; Ogawa Y; Berglund LA
    Carbohydr Polym; 2022 Mar; 279():119004. PubMed ID: 34980351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content.
    Azeredo HM; Mattoso LH; Avena-Bustillos RJ; Filho GC; Munford ML; Wood D; McHugh TH
    J Food Sci; 2010; 75(1):N1-7. PubMed ID: 20492188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films.
    Morimune-Moriya S; Salajkova M; Zhou Q; Nishino T; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):2423-2431. PubMed ID: 29620880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface.
    Benhamou K; Kaddami H; Magnin A; Dufresne A; Ahmad A
    Carbohydr Polym; 2015 May; 122():202-11. PubMed ID: 25817660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice.
    Xiong Z; Lin M; Lin H; Huang M
    Carbohydr Polym; 2018 Jun; 189():79-86. PubMed ID: 29580429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.