These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 29578026)

  • 1. A subject-transfer framework for obviating inter- and intra-subject variability in EEG-based drowsiness detection.
    Wei CS; Lin YP; Wang YT; Lin CT; Jung TP
    Neuroimage; 2018 Jul; 174():407-419. PubMed ID: 29578026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer learning with large-scale data in brain-computer interfaces.
    Chun-Shu Wei ; Yuan-Pin Lin ; Yu-Te Wang ; Chin-Teng Lin ; Tzyy-Ping Jung
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4666-4669. PubMed ID: 28269314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Dimensional Subject Representation-Based Transfer Learning in EEG Decoding.
    Jeng PY; Wei CS; Jung TP; Wang LC
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):1915-1925. PubMed ID: 32960770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Drowsiness Detection Using Non-hair-Bearing EEG-Based Brain-Computer Interfaces.
    Wei CS; Wang YT; Lin CT; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):400-406. PubMed ID: 29432111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning a common dictionary for subject-transfer decoding with resting calibration.
    Morioka H; Kanemura A; Hirayama J; Shikauchi M; Ogawa T; Ikeda S; Kawanabe M; Ishii S
    Neuroimage; 2015 May; 111():167-78. PubMed ID: 25682943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG-Based Driver Drowsiness Estimation Using Feature Weighted Episodic Training.
    Cui Y; Xu Y; Wu D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Nov; 27(11):2263-2273. PubMed ID: 31603790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of Variabilities in EEG Dynamics During Motor Imagery-Based Multiclass Brain-Computer Interface.
    Saha S; Ahmed KIU; Mostafa R; Hadjileontiadis L; Khandoker A
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):371-382. PubMed ID: 29432108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring alert and drowsy states by modeling EEG source nonstationarity.
    Hsu SH; Jung TP
    J Neural Eng; 2017 Oct; 14(5):056012. PubMed ID: 28627505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online continual decoding of streaming EEG signal with a balanced and informative memory buffer.
    Duan T; Wang Z; Li F; Doretto G; Adjeroh DA; Yin Y; Tao C
    Neural Netw; 2024 Aug; 176():106338. PubMed ID: 38692190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-to-subject adaptation to reduce calibration time in motor imagery-based brain-computer interface.
    Arvaneh M; Robertson I; Ward TE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6501-4. PubMed ID: 25571485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking wakefulness as it fades: Micro-measures of alertness.
    Jagannathan SR; Ezquerro-Nassar A; Jachs B; Pustovaya OV; Bareham CA; Bekinschtein TA
    Neuroimage; 2018 Aug; 176():138-151. PubMed ID: 29698731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Event-Driven AR-Process Model for EEG-Based BCIs With Rapid Trial Sequences.
    Gonzalez-Navarro P; Marghi YM; Azari B; Akcakaya M; Erdogmus D
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):798-804. PubMed ID: 30869624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review.
    Saha S; Baumert M
    Front Comput Neurosci; 2019; 13():87. PubMed ID: 32038208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic classification methods for detecting drowsiness using wavelet packet transform extracted time-domain features from single-channel EEG signal.
    B VP; Chinara S
    J Neurosci Methods; 2021 Jan; 347():108927. PubMed ID: 32941920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.
    Kindermans PJ; Tangermann M; Müller KR; Schrauwen B
    J Neural Eng; 2014 Jun; 11(3):035005. PubMed ID: 24834896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A probabilistic approach for calibration time reduction in hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Akcakaya M
    Biomed Eng Online; 2020 Apr; 19(1):23. PubMed ID: 32299441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An inter-subject model to reduce the calibration time for motion imagination-based brain-computer interface.
    Zou Y; Zhao X; Chu Y; Zhao Y; Xu W; Han J
    Med Biol Eng Comput; 2019 Apr; 57(4):939-952. PubMed ID: 30498878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG-based decoding of error-related brain activity in a real-world driving task.
    Zhang H; Chavarriaga R; Khaliliardali Z; Gheorghe L; Iturrate I; Millán Jd
    J Neural Eng; 2015 Dec; 12(6):066028. PubMed ID: 26595103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing performances of SSVEP-based brain-computer interfaces via exploiting inter-subject information.
    Yuan P; Chen X; Wang Y; Gao X; Gao S
    J Neural Eng; 2015 Aug; 12(4):046006. PubMed ID: 26028259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces.
    Iturrate I; Montesano L; Minguez J
    J Neural Eng; 2013 Apr; 10(2):026024. PubMed ID: 23528750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.