These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29578111)

  • 1. Nanoscale linear permittivity imaging based on scanning nonlinear dielectric microscopy.
    Hiranaga Y; Chinone N; Cho Y
    Nanotechnology; 2018 May; 29(20):205709. PubMed ID: 29578111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carrier distribution imaging using ∂C/∂z-mode scanning nonlinear dielectric microscopy.
    Hiranaga Y; Cho Y
    Rev Sci Instrum; 2019 Aug; 90(8):083705. PubMed ID: 31472657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boxcar Averaging Scanning Nonlinear Dielectric Microscopy.
    Yamasue K; Cho Y
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Mapping of Dielectric Properties of Nanomaterials from Kilohertz to Megahertz Using Ultrasmall Cantilevers.
    Cadena MJ; Sung SH; Boudouris BW; Reifenberger R; Raman A
    ACS Nano; 2016 Apr; 10(4):4062-71. PubMed ID: 26972782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depth-sensitive subsurface imaging of polymer nanocomposites using second harmonic Kelvin probe force microscopy.
    Castañeda-Uribe OA; Reifenberger R; Raman A; Avila A
    ACS Nano; 2015 Mar; 9(3):2938-47. PubMed ID: 25591106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermittent contact scanning nonlinear dielectric microscopy.
    Hiranaga Y; Cho Y
    Rev Sci Instrum; 2010 Feb; 81(2):023705. PubMed ID: 20192500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing Dielectric Permittivity of Nanoscale Dielectric Films by Electrostatic Micro-Probe Technology: Finite Element Simulations.
    Ren H; Sun WF
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High resolution front-side visualization of charge stored in EEPROM with scanning nonlinear dielectric microscopy (SNDM).
    Zeng XM; Liu Q; Tay JY; Chew KY; Cheah J; Gan CL
    Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34407521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct mapping of the electric permittivity of heterogeneous non-planar thin films at gigahertz frequencies by scanning microwave microscopy.
    Biagi MC; Badino G; Fabregas R; Gramse G; Fumagalli L; Gomila G
    Phys Chem Chem Phys; 2017 Feb; 19(5):3884-3893. PubMed ID: 28106185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of charges stored in the floating gate of flash memory by scanning nonlinear dielectric microscopy.
    Honda K; Hashimoto S; Cho Y
    Nanotechnology; 2006 Apr; 17(7):S185-8. PubMed ID: 21727412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Time-Domain Reflectometry Method with Variable Needle Pulse Width for Measuring the Dielectric Properties of Materials.
    Wilczek A; Szypłowska A; Kafarski M; Skierucha W
    Sensors (Basel); 2016 Feb; 16(2):191. PubMed ID: 26861318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale Electric Permittivity of Single Bacterial Cells at Gigahertz Frequencies by Scanning Microwave Microscopy.
    Biagi MC; Fabregas R; Gramse G; Van Der Hofstadt M; Juárez A; Kienberger F; Fumagalli L; Gomila G
    ACS Nano; 2016 Jan; 10(1):280-8. PubMed ID: 26643251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy.
    Fumagalli L; Ferrari G; Sampietro M; Casuso I; Martínez E; Samitier J; Gomila G
    Nanotechnology; 2006 Sep; 17(18):4581-7. PubMed ID: 21727580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibrated nanoscale capacitance measurements using a scanning microwave microscope.
    Huber HP; Moertelmaier M; Wallis TM; Chiang CJ; Hochleitner M; Imtiaz A; Oh YJ; Schilcher K; Dieudonne M; Smoliner J; Hinterdorfer P; Rosner SJ; Tanbakuchi H; Kabos P; Kienberger F
    Rev Sci Instrum; 2010 Nov; 81(11):113701. PubMed ID: 21133472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibrated complex impedance and permittivity measurements with scanning microwave microscopy.
    Gramse G; Kasper M; Fumagalli L; Gomila G; Hinterdorfer P; Kienberger F
    Nanotechnology; 2014 Apr; 25(14):145703. PubMed ID: 24633347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy.
    Wu X; Hao Z; Wu D; Zheng L; Jiang Z; Ganesan V; Wang Y; Lai K
    Rev Sci Instrum; 2018 Apr; 89(4):043704. PubMed ID: 29716308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local permittivity measurement of dielectric materials based on the non-contact force curve of microwave atomic force microscopy.
    Tong B; Zhao M; Toku Y; Morita Y; Ju Y
    Rev Sci Instrum; 2019 Mar; 90(3):033706. PubMed ID: 30927781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Measurement of Local Infrared Absorption and Dielectric Function with Tip-Enhanced Near-Field Microscopy.
    Govyadinov AA; Amenabar I; Huth F; Carney PS; Hillenbrand R
    J Phys Chem Lett; 2013 May; 4(9):1526-31. PubMed ID: 26282309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale dielectric properties of insulating thin films: from single point measurements to quantitative images.
    Riedel C; Schwartz GA; Arinero R; Tordjeman P; Lévêque G; Alegría A; Colmenero J
    Ultramicroscopy; 2010 May; 110(6):634-8. PubMed ID: 20206448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inventing atomic resolution scanning dielectric microscopy to see a single protein complex operation live at resonance in a neuron without touching or adulterating the cell.
    Agrawal L; Sahu S; Ghosh S; Shiga T; Fujita D; Bandyopadhyay A
    J Integr Neurosci; 2016 Dec; 15(4):435-462. PubMed ID: 28142317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.