These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29578348)

  • 1. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.
    Preston DJ; Wilke KL; Lu Z; Cruz SS; Zhao Y; Becerra LL; Wang EN
    Langmuir; 2018 Apr; 34(15):4658-4664. PubMed ID: 29578348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.
    Preston DJ; Lu Z; Song Y; Zhao Y; Wilke KL; Antao DS; Louis M; Wang EN
    Sci Rep; 2018 Jan; 8(1):540. PubMed ID: 29323200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary-Enhanced Filmwise Condensation in Porous Media.
    Wang R; Antao DS
    Langmuir; 2018 Nov; 34(46):13855-13863. PubMed ID: 30372087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable graphene coatings for enhanced condensation heat transfer.
    Preston DJ; Mafra DL; Miljkovic N; Kong J; Wang EN
    Nano Lett; 2015 May; 15(5):2902-9. PubMed ID: 25826223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable Dropwise Condensation of Ethanol and Hexane on Rationally Designed Ultrascalable Nanostructured Lubricant-Infused Surfaces.
    Sett S; Sokalski P; Boyina K; Li L; Rabbi KF; Auby H; Foulkes T; Mahvi A; Barac G; Bolton LW; Miljkovic N
    Nano Lett; 2019 Aug; 19(8):5287-5296. PubMed ID: 31328924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dropwise condensation of low surface tension fluids on omniphobic surfaces.
    Rykaczewski K; Paxson AT; Staymates M; Walker ML; Sun X; Anand S; Srinivasan S; McKinley GH; Chinn J; Scott JH; Varanasi KK
    Sci Rep; 2014 Mar; 4():4158. PubMed ID: 24595171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced condensation heat transfer using porous silica inverse opal coatings on copper tubes.
    Adera S; Naworski L; Davitt A; Mandsberg NK; Shneidman AV; Alvarenga J; Aizenberg J
    Sci Rep; 2021 May; 11(1):10675. PubMed ID: 34021211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrent filmwise and dropwise condensation on a beetle mimetic surface.
    Hou Y; Yu M; Chen X; Wang Z; Yao S
    ACS Nano; 2015 Jan; 9(1):71-81. PubMed ID: 25482594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidating the Mechanism of Condensation-Mediated Degradation of Organofunctional Silane Self-Assembled Monolayer Coatings.
    Wang R; Jakhar K; Ahmed S; Antao DS
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34923-34934. PubMed ID: 34264646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rationally 3D-Textured Copper Surfaces for Laplace Pressure Imbalance-Induced Enhancement in Dropwise Condensation.
    Sharma CS; Stamatopoulos C; Suter R; von Rohr PR; Poulikakos D
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29127-29135. PubMed ID: 30067013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Few-layer graphene on nickel enabled sustainable dropwise condensation.
    Chang W; Peng B; Egab K; Zhang Y; Cheng Y; Li X; Ma X; Li C
    Sci Bull (Beijing); 2021 Sep; 66(18):1877-1884. PubMed ID: 36654397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.
    Tsuchiya H; Tenjimbayashi M; Moriya T; Yoshikawa R; Sasaki K; Togasawa R; Yamazaki T; Manabe K; Shiratori S
    Langmuir; 2017 Sep; 33(36):8950-8960. PubMed ID: 28826213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating Heat Transfer During Transient Dropwise Condensation on a Low-Thermal-Conductivity Substrate.
    Macner AM; Daniel S; Steen PH
    Langmuir; 2019 Sep; 35(35):11566-11578. PubMed ID: 31381348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation.
    Chehrghani MM; Abbasiasl T; Sadaghiani AK; Koşar A
    Langmuir; 2021 Nov; 37(46):13567-13575. PubMed ID: 34751032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-shedding and sweeping of condensate on composite nano-surface under external force field: enhancement mechanism for dropwise and filmwise condensation modes.
    Sun J; Wang HS
    Sci Rep; 2017 Aug; 7(1):8633. PubMed ID: 28819170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer Infused Porous Surfaces for Robust, Thermally Conductive, Self-Healing Coatings for Dropwise Condensation.
    Wilke KL; Antao DS; Cruz S; Iwata R; Zhao Y; Leroy A; Preston DJ; Wang EN
    ACS Nano; 2020 Nov; 14(11):14878-14886. PubMed ID: 33185426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Switchable Wettability for Condensation Heat Transfer.
    Ludwicki JM; Robinson FL; Steen PH
    ACS Appl Mater Interfaces; 2020 May; 12(19):22115-22119. PubMed ID: 32347701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Preston DJ; Enright R; Wang EN
    ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dropwise Condensate Comb for Enhanced Heat Transfer.
    Tang Y; Yang X; Wang L; Li Y; Zhu D
    ACS Appl Mater Interfaces; 2023 May; 15(17):21549-21561. PubMed ID: 37083343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.