These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29578348)

  • 21. The effect of surface wettability on water vapor condensation in nanoscale.
    Niu D; Tang GH
    Sci Rep; 2016 Jan; 6():19192. PubMed ID: 26754316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dropwise Condensation on Multiscale Bioinspired Metallic Surfaces with Nanofeatures.
    Orejon D; Askounis A; Takata Y; Attinger D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24735-24750. PubMed ID: 31180632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Durable, Ultrathin, and Antifouling Polymer Brush Coating for Efficient Condensation Heat Transfer.
    Li S; Lam CWE; Donati M; Regulagadda K; Yavuz E; Pfeiffer T; Sarkiris P; Gogolides E; Milionis A; Poulikakos D; Butt HJ; Kappl M
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1941-1949. PubMed ID: 38115194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Condensation Heat-Transfer Performance of Thermally Stable Superhydrophobic Cerium-Oxide Surfaces.
    Shim J; Seo D; Oh S; Lee J; Nam Y
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31765-31776. PubMed ID: 30136846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review of droplet dynamics and dropwise condensation enhancement: Theory, experiments and applications.
    Wang X; Xu B; Chen Z; Del Col D; Li D; Zhang L; Mou X; Liu Q; Yang Y; Cao Q
    Adv Colloid Interface Sci; 2022 Jul; 305():102684. PubMed ID: 35525088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer.
    Xiao R; Miljkovic N; Enright R; Wang EN
    Sci Rep; 2013; 3():1988. PubMed ID: 23759735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoarray-Embedded Hierarchical Surfaces for Highly Durable Dropwise Condensation.
    Hu Y; Jiang K; Liew KM; Zhang LW
    Research (Wash D C); 2022; 2022():9789657. PubMed ID: 36061819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal Surface Engineering for Extreme Sustenance of Jumping Droplet Condensation.
    Donati M; Regulagadda K; Lam CWE; Milionis A; Sharma CS; Poulikakos D
    Langmuir; 2024 Jan; 40(2):1257-1265. PubMed ID: 38156900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: Promise versus Reality.
    Sett S; Yan X; Barac G; Bolton LW; Miljkovic N
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36400-36408. PubMed ID: 28950702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dropwise Condensation on Soft Hydrophobic Coatings.
    Phadnis A; Rykaczewski K
    Langmuir; 2017 Oct; 33(43):12095-12101. PubMed ID: 28956930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances.
    Sun J; Wang HS
    Sci Rep; 2016 Oct; 6():35003. PubMed ID: 27721397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dropwise condensation on solid hydrophilic surfaces.
    Cha H; Vahabi H; Wu A; Chavan S; Kim MK; Sett S; Bosch SA; Wang W; Kota AK; Miljkovic N
    Sci Adv; 2020 Jan; 6(2):eaax0746. PubMed ID: 31950076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quasi-Liquid Surfaces for Sustainable High-Performance Steam Condensation.
    Monga D; Guo Z; Shan L; Taba SA; Sarma J; Dai X
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13932-13941. PubMed ID: 35287435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.
    Li G; Alhosani MH; Yuan S; Liu H; Ghaferi AA; Zhang T
    Langmuir; 2014 Dec; 30(48):14498-511. PubMed ID: 25419845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Density Maximization of One-Step Electrodeposited Copper Nanocones and Dropwise Condensation Heat-Transfer Performance Evaluation.
    Wang R; Wu F; Xing D; Yu F; Gao X
    ACS Appl Mater Interfaces; 2020 May; 12(21):24512-24520. PubMed ID: 32363858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Condensation heat transfer in microgravity conditions.
    Berto A; Azzolin M; Bortolin S; Miscevic M; Lavieille P; Del Col D
    NPJ Microgravity; 2023 Apr; 9(1):32. PubMed ID: 37015948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust Micro-Nanostructured Superhydrophobic Surfaces for Long-Term Dropwise Condensation.
    Tang Y; Yang X; Li Y; Lu Y; Zhu D
    Nano Lett; 2021 Nov; 21(22):9824-9833. PubMed ID: 34472863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preferred Mode of Atmospheric Water Vapor Condensation on Nanoengineered Surfaces: Dropwise or Filmwise?
    Thomas TM; Sinha Mahapatra P; Ganguly R; Tiwari MK
    Langmuir; 2023 Apr; 39(15):5396-5407. PubMed ID: 37014297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copper-Based Ultrathin Nickel Nanocone Films with High-Efficiency Dropwise Condensation Heat Transfer Performance.
    Zhao Y; Luo Y; Zhu J; Li J; Gao X
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11719-23. PubMed ID: 26011021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system.
    Leach RN; Stevens F; Langford SC; Dickinson JT
    Langmuir; 2006 Oct; 22(21):8864-72. PubMed ID: 17014129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.