These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29578460)

  • 1. Recovery time course of erythrocyte deformability following exposure to shear is dependent upon conditioning shear stress.
    Kuck L; Grau M; Simmonds MJ
    Biorheology; 2018; 54(5-6):141-152. PubMed ID: 29578460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biphasic impairment of erythrocyte deformability in response to repeated, short duration exposures of supraphysiological, subhaemolytic shear stress.
    McNamee AP; Tansley GD; Sabapathy S; Simmonds MJ
    Biorheology; 2016 Nov; 53(3-4):137-149. PubMed ID: 27662271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythrocyte deformability responses to intermittent and continuous subhemolytic shear stress.
    Simmonds MJ; Atac N; Baskurt OK; Meiselman HJ; Yalcin O
    Biorheology; 2014; 51(2-3):171-85. PubMed ID: 24948378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repetitive Supra-Physiological Shear Stress Impairs Red Blood Cell Deformability and Induces Hemolysis.
    Horobin JT; Sabapathy S; Simmonds MJ
    Artif Organs; 2017 Nov; 41(11):1017-1025. PubMed ID: 28543744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative Stress Increases Erythrocyte Sensitivity to Shear-Mediated Damage.
    McNamee AP; Horobin JT; Tansley GD; Simmonds MJ
    Artif Organs; 2018 Feb; 42(2):184-192. PubMed ID: 28877350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Susceptibility of density-fractionated erythrocytes to subhaemolytic mechanical shear stress.
    McNamee AP; Richardson K; Horobin J; Kuck L; Simmonds MJ
    Int J Artif Organs; 2019 Mar; 42(3):151-157. PubMed ID: 30073884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red blood cell tolerance to shear stress above and below the subhemolytic threshold.
    Horobin JT; Sabapathy S; Simmonds MJ
    Biomech Model Mechanobiol; 2020 Jun; 19(3):851-860. PubMed ID: 31720887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium/protein kinase C signaling mechanisms in shear-induced mechanical responses of red blood cells.
    Ugurel E; Kisakurek ZB; Aksu Y; Goksel E; Cilek N; Yalcin O
    Microvasc Res; 2021 May; 135():104124. PubMed ID: 33359148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear stress-induced improvement of red blood cell deformability.
    Meram E; Yilmaz BD; Bas C; Atac N; Yalcin O; Meiselman HJ; Baskurt OK
    Biorheology; 2013; 50(3-4):165-76. PubMed ID: 23863281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic deformability of erythrocytes at various shear stresses.
    Heo Y; Jung H; Shin S
    Clin Hemorheol Microcirc; 2015; 59(3):211-8. PubMed ID: 24004549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bovine erythrocytes are poor surrogates for human when exposed to sublethal shear stress.
    McNamee AP; Kuck L; Simmonds MJ
    Int J Artif Organs; 2022 Jun; 45(6):580-587. PubMed ID: 35531705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of the level and duration of shear stress exposure that induces subhemolytic damage to erythrocytes.
    Simmonds MJ; Meiselman HJ
    Biorheology; 2016; 53(5-6):237-249. PubMed ID: 28222499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red blood cell mechanical stability test.
    Baskurt OK; Meiselman HJ
    Clin Hemorheol Microcirc; 2013; 55(1):55-62. PubMed ID: 23445627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood storage alters mechanical stress responses of erythrocytes.
    Ugurel E; Kucuksumer Z; Eglenen B; Yalcin O
    Clin Hemorheol Microcirc; 2017; 66(2):143-155. PubMed ID: 28282803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute Free-Iron Exposure Does Not Explain the Impaired Haemorheology Associated with Haemochromatosis.
    McNamee AP; Sabapathy S; Singh I; Horobin J; Guerrero J; Simmonds MJ
    PLoS One; 2016; 11(1):e0146448. PubMed ID: 26741993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformability of human red blood cells exposed to a uniform shear stress as measured by a cyclically reversing shear flow generator.
    Watanabe N; Arakawa Y; Sou A; Kataoka H; Ohuchi K; Fujimoto T; Takatani S
    Physiol Meas; 2007 May; 28(5):531-45. PubMed ID: 17470986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited effects of activated protein C on red blood cell deformability.
    Piagnerelli M; Njimi H; Coelho TV; Reggiori G; Castanares Zapatero D; Donadello K; Vincent JL
    Clin Hemorheol Microcirc; 2013; 53(4):387-91. PubMed ID: 22504218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of lanthanides on red blood cell deformability and response to mechanical stress: role of lanthanide ionic radius.
    Alexy T; Baskurt OK; Nemeth N; Uyuklu M; Wenby RB; Meiselman HJ
    Biorheology; 2011; 48(3-4):173-83. PubMed ID: 22156032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of lipopolysaccharide on changes in red blood cells in a mice endotoxemia model.
    Myung J; Park SJ; Lim J; Kim YH; Shin S; Lim CH
    Clin Hemorheol Microcirc; 2016 Oct; 63(4):305-312. PubMed ID: 26484719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood rheology during normal pregnancy.
    Tsikouras P; Niesigk B; von Tempelhoff GF; Rath W; Schelkunov O; Daragó P; Csorba R
    Clin Hemorheol Microcirc; 2018; 69(1-2):101-114. PubMed ID: 29758932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.