These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 29578470)
21. The influence of vascular anatomy on carotid artery stenting: a parametric study for damage assessment. Iannaccone F; Debusschere N; De Bock S; De Beule M; Van Loo D; Vermassen F; Segers P; Verhegghe B J Biomech; 2014 Mar; 47(4):890-8. PubMed ID: 24480704 [TBL] [Abstract][Full Text] [Related]
22. Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Liang DK; Yang DZ; Qi M; Wang WQ Int J Cardiol; 2005 Oct; 104(3):314-8. PubMed ID: 16186062 [TBL] [Abstract][Full Text] [Related]
23. Numerical Modeling of Nitinol Stent Oversizing in Arteries with Clinically Relevant Levels of Peripheral Arterial Disease: The Influence of Plaque Type on the Outcomes of Endovascular Therapy. Gökgöl C; Diehm N; Büchler P Ann Biomed Eng; 2017 Jun; 45(6):1420-1433. PubMed ID: 28150055 [TBL] [Abstract][Full Text] [Related]
24. A method for investigating the mechanical properties of intracoronary stents using finite element numerical simulation. Tan LB; Webb DC; Kormi K; Al-Hassani ST Int J Cardiol; 2001 Mar; 78(1):51-67. PubMed ID: 11259813 [TBL] [Abstract][Full Text] [Related]
25. A numerical study on the application of the functionally graded materials in the stent design. Khosravi A; Bahreinizad H; Bani MS; Karimi A Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():182-188. PubMed ID: 28183596 [TBL] [Abstract][Full Text] [Related]
26. On the finite element modelling of balloon-expandable stents. Ju F; Xia Z; Sasaki K J Mech Behav Biomed Mater; 2008 Jan; 1(1):86-95. PubMed ID: 19627774 [TBL] [Abstract][Full Text] [Related]
27. A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery. Karimi A; Navidbakhsh M; Yamada H; Razaghi R Med Biol Eng Comput; 2014 Jul; 52(7):589-99. PubMed ID: 24888756 [TBL] [Abstract][Full Text] [Related]
28. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning. Kumar A; Bhatnagar N Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):245-259. PubMed ID: 33021106 [TBL] [Abstract][Full Text] [Related]
29. Multi-objective optimization of coronary stent using Kriging surrogate model. Li H; Gu J; Wang M; Zhao D; Li Z; Qiao A; Zhu B Biomed Eng Online; 2016 Dec; 15(Suppl 2):148. PubMed ID: 28155700 [TBL] [Abstract][Full Text] [Related]
30. An Optical Coherence Tomography Assessment of Stent Strut Apposition Based on the Presence of Lipid-Rich Plaque in the Carotid Artery. Liu R; Jiang Y; Xiong Y; Li M; Ma M; Zhu W; Yin Q; Li W; Xu G; Liu X J Endovasc Ther; 2015 Dec; 22(6):942-9. PubMed ID: 26464412 [TBL] [Abstract][Full Text] [Related]
31. Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis. Wu W; Qi M; Liu XP; Yang DZ; Wang WQ J Biomech; 2007; 40(13):3034-40. PubMed ID: 17511995 [TBL] [Abstract][Full Text] [Related]
32. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Migliavacca F; Petrini L; Massarotti P; Schievano S; Auricchio F; Dubini G Biomech Model Mechanobiol; 2004 Jun; 2(4):205-17. PubMed ID: 15029511 [TBL] [Abstract][Full Text] [Related]
33. Patient-specific Finite Element Model of Coronary Artery Stenting. Razaghi R; Karimi A; Taheri RA Curr Pharm Des; 2018; 24(37):4492-4502. PubMed ID: 30514186 [TBL] [Abstract][Full Text] [Related]
34. Optimizing through computational modeling to reduce dogboning of functionally graded coronary stent material. Khosravi A; Akbari A; Bahreinizad H; Salimi Bani M; Karimi A J Mater Sci Mater Med; 2017 Aug; 28(9):142. PubMed ID: 28819891 [TBL] [Abstract][Full Text] [Related]
35. Investigation of fibrous cap stresses on vulnerable plaques leading to heart attacks. Hsiao HM; Wu YY; Tsai BC; Chen YC; Cheng YH Technol Health Care; 2015; 24 Suppl 1():S155-61. PubMed ID: 26684564 [TBL] [Abstract][Full Text] [Related]
36. Simulated Bench Testing to Evaluate the Mechanical Performance of New Carotid Stents. Kumar GP; Kabinejadian F; Liu J; Ho P; Leo HL; Cui F Artif Organs; 2017 Mar; 41(3):267-272. PubMed ID: 27357068 [TBL] [Abstract][Full Text] [Related]
37. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Capelli C; Gervaso F; Petrini L; Dubini G; Migliavacca F Med Eng Phys; 2009 May; 31(4):441-7. PubMed ID: 19109049 [TBL] [Abstract][Full Text] [Related]
38. Characterizing the expansive deformation of a bioresorbable polymer fiber stent. Welch T; Eberhart RC; Chuong CJ Ann Biomed Eng; 2008 May; 36(5):742-51. PubMed ID: 18264765 [TBL] [Abstract][Full Text] [Related]
39. Effects of stent design parameters on normal artery wall mechanics. Bedoya J; Meyer CA; Timmins LH; Moreno MR; Moore JE J Biomech Eng; 2006 Oct; 128(5):757-65. PubMed ID: 16995763 [TBL] [Abstract][Full Text] [Related]
40. Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning. Wiesent L; Schultheiß U; Schmid C; Schratzenstaller T; Nonn A PLoS One; 2019; 14(10):e0224026. PubMed ID: 31626662 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]