BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 29578608)

  • 1. Optimization of bioprocess productivity based on metabolic-genetic network models with bilevel dynamic programming.
    Jabarivelisdeh B; Waldherr S
    Biotechnol Bioeng; 2018 Jul; 115(7):1829-1841. PubMed ID: 29578608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic metabolic engineering for increasing bioprocess productivity.
    Anesiadis N; Cluett WR; Mahadevan R
    Metab Eng; 2008 Sep; 10(5):255-66. PubMed ID: 18606241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic flux balance analysis of batch fermentation: effect of genetic manipulations on ethanol production.
    Lisha KP; Sarkar D
    Bioprocess Biosyst Eng; 2014 Apr; 37(4):617-27. PubMed ID: 23921448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating optimal profiles of genetic alterations using constraint-based models.
    Gadkar KG; Doyle Iii FJ; Edwards JS; Mahadevan R
    Biotechnol Bioeng; 2005 Jan; 89(2):243-51. PubMed ID: 15593263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering with multi-objective optimization of kinetic models.
    Villaverde AF; Bongard S; Mauch K; Balsa-Canto E; Banga JR
    J Biotechnol; 2016 Mar; 222():1-8. PubMed ID: 26826510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A framework for the identification of promising bio-based chemicals.
    Wu W; Long MR; Zhang X; Reed JL; Maravelias CT
    Biotechnol Bioeng; 2018 Sep; 115(9):2328-2340. PubMed ID: 29940066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for the production of fumaric acid.
    Song CW; Kim DI; Choi S; Jang JW; Lee SY
    Biotechnol Bioeng; 2013 Jul; 110(7):2025-34. PubMed ID: 23436277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions.
    Yang J; Wang Z; Zhu N; Wang B; Chen T; Zhao X
    Microbiol Res; 2014; 169(5-6):432-40. PubMed ID: 24103861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospects of microbial cell factories developed through systems metabolic engineering.
    Gustavsson M; Lee SY
    Microb Biotechnol; 2016 Sep; 9(5):610-7. PubMed ID: 27435545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing elementary mode analysis, pathway thermodynamics, and a genetic algorithm for metabolic flux determination and optimal metabolic network design.
    Boghigian BA; Shi H; Lee K; Pfeifer BA
    BMC Syst Biol; 2010 Apr; 4():49. PubMed ID: 20416071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of CellNetAnalyzer in biotechnology and metabolic engineering.
    von Kamp A; Thiele S; Hädicke O; Klamt S
    J Biotechnol; 2017 Nov; 261():221-228. PubMed ID: 28499817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layered dynamic regulation for improving metabolic pathway productivity in
    Doong SJ; Gupta A; Prather KLJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2964-2969. PubMed ID: 29507236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of growth-coupling strategies and their underlying principles.
    Alter TB; Ebert BE
    BMC Bioinformatics; 2019 Aug; 20(1):447. PubMed ID: 31462231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive bi-level programming for optimal gene knockouts for targeted overproduction under phenotypic constraints.
    Ren S; Zeng B; Qian X
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S17. PubMed ID: 23368729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic metabolic flux analysis--tools for probing transient states of metabolic networks.
    Antoniewicz MR
    Curr Opin Biotechnol; 2013 Dec; 24(6):973-8. PubMed ID: 23611566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory dynamic enzyme-cost flux balance analysis: A unifying framework for constraint-based modeling.
    Liu L; Bockmayr A
    J Theor Biol; 2020 Sep; 501():110317. PubMed ID: 32446743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a metabolic engineering strain "commons": an Escherichia coli platform strain for ethanol production.
    Woodruff LB; May BL; Warner JR; Gill RT
    Biotechnol Bioeng; 2013 May; 110(5):1520-6. PubMed ID: 23322646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli.
    Srirangan K; Liu X; Westbrook A; Akawi L; Pyne ME; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2014 Nov; 98(22):9499-515. PubMed ID: 25301579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of genome-scale metabolic network model in metabolic engineering.
    Kim B; Kim WJ; Kim DI; Lee SY
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):339-48. PubMed ID: 25465049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-objective optimization of enzyme manipulations in metabolic networks considering resilience effects.
    Wu WH; Wang FS; Chang MS
    BMC Syst Biol; 2011 Sep; 5():145. PubMed ID: 21929795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.