These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 2957966)
1. The detection of microemboli in the middle cerebral artery during cardiopulmonary bypass: a transcranial Doppler ultrasound investigation using membrane and bubble oxygenators. Padayachee TS; Parsons S; Theobold R; Linley J; Gosling RG; Deverall PB Ann Thorac Surg; 1987 Sep; 44(3):298-302. PubMed ID: 2957966 [TBL] [Abstract][Full Text] [Related]
2. Ultrasound detection of micro-emboli in the middle cerebral artery during cardiopulmonary bypass surgery. Deverall PB; Padayachee TS; Parsons S; Theobold R; Battistessa SA Eur J Cardiothorac Surg; 1988; 2(4):256-60. PubMed ID: 3078422 [TBL] [Abstract][Full Text] [Related]
3. The effect of arterial filtration on reduction of gaseous microemboli in the middle cerebral artery during cardiopulmonary bypass. Padayachee TS; Parsons S; Theobold R; Gosling RG; Deverall PB Ann Thorac Surg; 1988 Jun; 45(6):647-9. PubMed ID: 3288143 [TBL] [Abstract][Full Text] [Related]
4. Significance of gaseous microemboli in the cerebral circulation during cardiopulmonary bypass in dogs. Johnston WE; Stump DA; DeWitt DS; Vinten-Johansen J; O'Steen WK; James RL; Prough DS Circulation; 1993 Nov; 88(5 Pt 2):II319-29. PubMed ID: 8222173 [TBL] [Abstract][Full Text] [Related]
5. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. I. Gaseous microemboli. Nollert G; Nagashima M; Bucerius J; Shin'oka T; Jonas RA J Thorac Cardiovasc Surg; 1999 Jun; 117(6):1166-71. PubMed ID: 10343268 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops. Guan Y; Palanzo D; Kunselman A; Undar A Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280 [TBL] [Abstract][Full Text] [Related]
7. The dynamic air bubble trap reduces cerebral microembolism during cardiopulmonary bypass. Schoenburg M; Kraus B; Muehling A; Taborski U; Hofmann H; Erhardt G; Hein S; Roth M; Vogt PR; Karliczek GF; Kloevekorn WP J Thorac Cardiovasc Surg; 2003 Nov; 126(5):1455-60. PubMed ID: 14666019 [TBL] [Abstract][Full Text] [Related]
8. In Vitro Evaluation of Pediatric Hollow-Fiber Membrane Oxygenators on Hemodynamic Performance and Gaseous Microemboli Handling: An International Multicenter/Multidisciplinary Approach. Wang S; Caneo LF; Jatene MB; Jatene FB; Cestari IA; Kunselman AR; Ündar A Artif Organs; 2017 Sep; 41(9):865-874. PubMed ID: 28597590 [TBL] [Abstract][Full Text] [Related]
9. In vitro comparison of the delivery of gaseous microemboli and hemodynamic energy for a diagonal and a roller pump during simulated infantile cardiopulmonary bypass procedures. Dhami R; Wang S; Kunselman AR; Ündar A Artif Organs; 2014 Jan; 38(1):56-63. PubMed ID: 23876021 [TBL] [Abstract][Full Text] [Related]
10. Effect of Normobaric versus Hypobaric Oxygenation on Gaseous Microemboli Removal in a Diffusion Membrane Oxygenator: An In Vitro Comparison. Schuldes M; Riley JB; Francis SG; Clingan S J Extra Corpor Technol; 2016 Sep; 48(3):129-136. PubMed ID: 27729706 [TBL] [Abstract][Full Text] [Related]
11. Use of a dynamic bubble trap in the arterial line reduces microbubbles during cardiopulmonary bypass and microembolic signals in the middle cerebral artery. Perthel M; Kseibi S; Bendisch A; Laas J Perfusion; 2005 May; 20(3):151-6. PubMed ID: 16038387 [TBL] [Abstract][Full Text] [Related]
12. Brain emboli distribution and differentiation during cardiopulmonary bypass. Zanatta P; Forti A; Minniti G; Comin A; Mazzarolo AP; Chilufya M; Baldanzi F; Bosco E; Sorbara C; Polesel E J Cardiothorac Vasc Anesth; 2013 Oct; 27(5):865-75. PubMed ID: 23706643 [TBL] [Abstract][Full Text] [Related]
13. The bubble oxygenator as a source of gaseous microemboli. Yost G Med Instrum; 1985; 19(2):67-9. PubMed ID: 4000009 [TBL] [Abstract][Full Text] [Related]
14. Impact of oxygenator characteristics on its capability to remove gaseous microemboli. De Somer F J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit. Wang S; Kunselman AR; Ündar A Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381 [TBL] [Abstract][Full Text] [Related]
16. Comparison of gaseous microemboli counts in arterial, simultaneous and venous heat exchange with a hollow fiber membrane oxygenator. Sutton RG; Riley JB; Merrill JH J Extra Corpor Technol; 1994; 26(2):56-60. PubMed ID: 10147369 [TBL] [Abstract][Full Text] [Related]
17. Gaseous microemboli production of bubble and membrane oxygenators. Pearson DT; Holden MP; Poslad SJ Life Support Syst; 1986; 4 Suppl 1():198-208. PubMed ID: 3747601 [No Abstract] [Full Text] [Related]
18. Cerebral microemboli during cardiopulmonary bypass: increased emboli during perfusionist interventions. Taylor RL; Borger MA; Weisel RD; Fedorko L; Feindel CM Ann Thorac Surg; 1999 Jul; 68(1):89-93. PubMed ID: 10421121 [TBL] [Abstract][Full Text] [Related]
19. In Vitro Comparison of Pediatric Oxygenators With and Without Integrated Arterial Filters in Maintaining Optimal Hemodynamic Stability and Managing Gaseous Microemboli. Moroi M; Force M; Wang S; Kunselman AR; Ündar A Artif Organs; 2018 Apr; 42(4):420-431. PubMed ID: 29377185 [TBL] [Abstract][Full Text] [Related]
20. The effect of the dynamic air bubble trap on cerebral microemboli and S100 beta. Motallebzadeh R; Jahangiri M J Thorac Cardiovasc Surg; 2004 Jul; 128(1):154. PubMed ID: 15224035 [No Abstract] [Full Text] [Related] [Next] [New Search]