These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29579689)

  • 1. Improved production of isobutanol in pervaporation-coupled bioreactor using sugarcane bagasse hydrolysate in engineered Enterobacter aerogenes.
    Jung HM; Lee JY; Lee JH; Oh MK
    Bioresour Technol; 2018 Jul; 259():373-380. PubMed ID: 29579689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Enterobacter aerogenes for 2,3-butanediol production from sugarcane bagasse hydrolysate.
    Um J; Kim DG; Jung MY; Saratale GD; Oh MK
    Bioresour Technol; 2017 Dec; 245(Pt B):1567-1574. PubMed ID: 28596073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved 2,3-butanediol yield and productivity from lignocellulose biomass hydrolysate in metabolically engineered Enterobacter aerogenes.
    Kim DG; Yoo SW; Kim M; Ko JK; Um Y; Oh MK
    Bioresour Technol; 2020 Aug; 309():123386. PubMed ID: 32330805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. n-Butanol production from lignocellulosic biomass hydrolysates without detoxification by Clostridium tyrobutyricum Δack-adhE2 in a fibrous-bed bioreactor.
    Li J; Du Y; Bao T; Dong J; Lin M; Shim H; Yang ST
    Bioresour Technol; 2019 Oct; 289():121749. PubMed ID: 31323711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli.
    Liu R; Liang L; Li F; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Bioresour Technol; 2013 Dec; 149():84-91. PubMed ID: 24096277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formate and Nitrate Utilization in Enterobacter aerogenes for Semi-Anaerobic Production of Isobutanol.
    Jung HM; Kim YH; Oh MK
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28731532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-stage repeated-batch immobilized cell fermentation to produce butanol from non-detoxified sugarcane bagasse hemicellulose hydrolysates.
    Chacón SJ; Matias G; Ezeji TC; Maciel Filho R; Mariano AP
    Bioresour Technol; 2021 Feb; 321():124504. PubMed ID: 33307480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilized ethanol fermentation coupled to pervaporation with silicalite-1/polydimethylsiloxane/polyvinylidene fluoride composite membrane.
    Cai D; Hu S; Chen C; Wang Y; Zhang C; Miao Q; Qin P; Tan T
    Bioresour Technol; 2016 Nov; 220():124-131. PubMed ID: 27569576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentation of hexoses and pentoses from sugarcane bagasse hydrolysates into ethanol by Spathaspora hagerdaliae.
    Rech FR; Fontana RC; Rosa CA; Camassola M; Ayub MAZ; Dillon AJP
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):83-92. PubMed ID: 30264227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-production of 1,2,4-butantriol and ethanol from lignocellulose hydrolysates.
    Zhao M; Shi D; Lu X; Zong H; Zhuge B
    Bioresour Technol; 2019 Jun; 282():433-438. PubMed ID: 30889534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Butyric acid production from lignocellulosic biomass hydrolysates by engineered Clostridium tyrobutyricum overexpressing xylose catabolism genes for glucose and xylose co-utilization.
    Fu H; Yang ST; Wang M; Wang J; Tang IC
    Bioresour Technol; 2017 Jun; 234():389-396. PubMed ID: 28343058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of chemically modified sugarcane bagasse on butanol production by immobilized Clostridium acetobutylicum XY16].
    Kong X; He A; Chen J; Chen W; Yin C; Chen P; Wu H; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2014 Feb; 30(2):305-9. PubMed ID: 24941751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-fermentation of succinic acid and ethanol from sugarcane bagasse based on full hexose and pentose utilization and carbon dioxide reduction.
    Xu C; Alam MA; Wang Z; Peng Y; Xie C; Gong W; Yang Q; Huang S; Zhuang W; Xu J
    Bioresour Technol; 2021 Nov; 339():125578. PubMed ID: 34298250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors.
    Martín C; Marcet M; Almazán O; Jönsson LJ
    Bioresour Technol; 2007 Jul; 98(9):1767-73. PubMed ID: 16934451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biobutanol production from C5/C6 carbohydrates integrated with pervaporation: experimental results and conceptual plant design.
    Van Hecke W; Vandezande P; Dubreuil M; Uyttebroek M; Beckers H; De Wever H
    J Ind Microbiol Biotechnol; 2016 Jan; 43(1):25-36. PubMed ID: 26667831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source.
    Liu R; Liang L; Cao W; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Bioresour Technol; 2013 May; 135():574-7. PubMed ID: 23010211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries.
    Silva-Fernandes T; Santos JC; Hasmann F; Rodrigues RCLB; Izario Filho HJ; Felipe MGA
    Bioresour Technol; 2017 Nov; 243():384-392. PubMed ID: 28683391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biobutanol from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process.
    Cai D; Zhang T; Zheng J; Chang Z; Wang Z; Qin PY; Tan TW
    Bioresour Technol; 2013 Oct; 145():97-102. PubMed ID: 23562566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media.
    Martini C; Tauk-Tornisielo SM; Codato CB; Bastos RG; Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2016 May; 32(5):80. PubMed ID: 27038950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.