These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29579934)

  • 1. In vitro protein digestion of pork cuts differ with muscle type.
    Zou X; Zhou G; Yu X; Bai Y; Wang C; Xu X; Dai C; Li C
    Food Res Int; 2018 Apr; 106():344-353. PubMed ID: 29579934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro protein digestibility of pork products is affected by the method of processing.
    Li L; Liu Y; Zou X; He J; Xu X; Zhou G; Li C
    Food Res Int; 2017 Feb; 92():88-94. PubMed ID: 28290301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of in vitro and in vivo digestion products of meat proteins from pork, beef, chicken, and fish.
    Wen S; Zhou G; Song S; Xu X; Voglmeir J; Liu L; Zhao F; Li M; Li L; Yu X; Bai Y; Li C
    Proteomics; 2015 Nov; 15(21):3688-98. PubMed ID: 26227428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The in vitro digestibility of beef varies with its inherent ultimate pH.
    Farouk MM; Wu G; Frost DA; Clerens S; Knowles SO
    Food Funct; 2014 Nov; 5(11):2759-67. PubMed ID: 25066932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooking affects pork proteins in vitro rate of digestion due to different structural and chemical modifications.
    Mitra B; Kristensen L; Lametsch R; Ruiz-Carrascal J
    Meat Sci; 2022 Oct; 192():108924. PubMed ID: 35878433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cooking on in vitro digestion of pork proteins: a peptidomic perspective.
    Wen S; Zhou G; Li L; Xu X; Yu X; Bai Y; Li C
    J Agric Food Chem; 2015 Jan; 63(1):250-61. PubMed ID: 25420116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of cooking temperature on the aggregation and digestion rate of myofibrillar proteins in Jinhua ham.
    Zhou CY; Pan DD; Sun YY; Li CB; Xu XL; Cao JX; Zhou GH
    J Sci Food Agric; 2018 Jul; 98(9):3563-3570. PubMed ID: 29315583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooking temperature is a key determinant of in vitro meat protein digestion rate: investigation of underlying mechanisms.
    Bax ML; Aubry L; Ferreira C; Daudin JD; Gatellier P; Rémond D; Santé-Lhoutellier V
    J Agric Food Chem; 2012 Mar; 60(10):2569-76. PubMed ID: 22335241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High pressure processing of meat: effects on ultrastructure and protein digestibility.
    Kaur L; Astruc T; Vénien A; Loison O; Cui J; Irastorza M; Boland M
    Food Funct; 2016 May; 7(5):2389-97. PubMed ID: 27143217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins.
    Santé-Lhoutellier V; Astruc T; Marinova P; Greve E; Gatellier P
    J Agric Food Chem; 2008 Feb; 56(4):1488-94. PubMed ID: 18237130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramuscular variations of proteome and muscle fiber type distribution in semimembranosus and semitendinosus muscles associated with pork quality.
    Kim GD; Yang HS; Jeong JY
    Food Chem; 2018 Apr; 244():143-152. PubMed ID: 29120762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The retention and recovery of amino acids from pork longissimus muscle following cooking to either 60°C or 75°C.
    Wilkinson BH; Lee E; Purchas RW; Morel PC
    Meat Sci; 2014 Jan; 96(1):361-5. PubMed ID: 23954276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable effect of steam injection level on beef muscles: semitendinosus and biceps femoris cooked in convection-steam oven.
    Zając M; Kącik S; Palka K; Widurek P
    Acta Sci Pol Technol Aliment; 2015; 14(4):303-312. PubMed ID: 28068037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources.
    Storcksdieck genannt Bonsmann S; Hurrell RF
    J Food Sci; 2007 Jan; 72(1):S019-29. PubMed ID: 17995893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of peptides released by in vitro digestion of pork meat.
    Escudero E; Sentandreu MA; Toldrá F
    J Agric Food Chem; 2010 Apr; 58(8):5160-5. PubMed ID: 20356084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of muscle type and microstructure on iridescence in cooked, cured pork meat products.
    Ruedt C; Gibis M; Weiss J
    J Food Sci; 2021 Aug; 86(8):3563-3573. PubMed ID: 34268771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome Profiles of Digested Products of Commercial Meat Sources.
    Li L; Liu Y; Zhou G; Xu X; Li C
    Front Nutr; 2017; 4():8. PubMed ID: 28396857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changed dynamics in myofibrillar protein aggregation as a consequence of heating time and temperature.
    Promeyrat A; Bax ML; Traoré S; Aubry L; Santé-Lhoutellier V; Gatellier P
    Meat Sci; 2010 Aug; 85(4):625-31. PubMed ID: 20416808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A research note: effect of pH on meat iridescence in precooked cured pork.
    Ruedt C; Gibis M; Weiss J
    BMC Res Notes; 2022 Feb; 15(1):77. PubMed ID: 35193650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Changes and Evolution of Peptides During Chill Storage of Pork.
    Zou X; He J; Zhao D; Zhang M; Xie Y; Dai C; Wang C; Li C
    Front Nutr; 2020; 7():151. PubMed ID: 33072793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.