BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29579950)

  • 1. Hydrolysis and transepithelial transport of two corn gluten derived bioactive peptides in human Caco-2 cell monolayers.
    Ding L; Wang L; Zhang T; Yu Z; Liu J
    Food Res Int; 2018 Apr; 106():475-480. PubMed ID: 29579950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of Antihypertensive Peptide RVPSL, Ovotransferrin 328-332, in Human Intestinal Caco-2 Cell Monolayers.
    Ding L; Wang L; Zhang Y; Liu J
    J Agric Food Chem; 2015 Sep; 63(37):8143-50. PubMed ID: 26335384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport Study of Egg-Derived Antihypertensive Peptides (LKP and IQW) Using Caco-2 and HT29 Coculture Monolayers.
    Xu Q; Fan H; Yu W; Hong H; Wu J
    J Agric Food Chem; 2017 Aug; 65(34):7406-7414. PubMed ID: 28782363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of Egg White ACE-Inhibitory Peptide, Gln-Ile-Gly-Leu-Phe, in Human Intestinal Caco-2 Cell Monolayers with Cytoprotective Effect.
    Ding L; Zhang Y; Jiang Y; Wang L; Liu B; Liu J
    J Agric Food Chem; 2014 Apr; 62(14):3177-3182. PubMed ID: 24670259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of molecular weight on the transepithelial transport and peptidase degradation of casein-derived peptides by using Caco-2 cell model.
    Wang B; Li B
    Food Chem; 2017 Mar; 218():1-8. PubMed ID: 27719884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digestion and absorption of an egg white ACE-inhibitory peptide in human intestinal Caco-2 cell monolayers.
    Ding L; Wang L; Yu Z; Zhang T; Liu J
    Int J Food Sci Nutr; 2016; 67(2):111-6. PubMed ID: 26883099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of PepT1 transport of food-derived antihypertensive peptides, Ile-Pro-Pro and Leu-Lys-Pro using in vitro, ex vivo and in vivo transport models.
    Gleeson JP; Brayden DJ; Ryan SM
    Eur J Pharm Biopharm; 2017 Jun; 115():276-284. PubMed ID: 28315445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers.
    Satake M; Enjoh M; Nakamura Y; Takano T; Kawamura Y; Arai S; Shimizu M
    Biosci Biotechnol Biochem; 2002 Feb; 66(2):378-84. PubMed ID: 11999412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transepithelial Transport Characteristics of the Cholesterol- Lowing Soybean Peptide, WGAPSL, in Caco-2 Cell Monolayers.
    Zhang H; Duan Y; Feng Y; Wang J
    Molecules; 2019 Aug; 24(15):. PubMed ID: 31387268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The (193-209) 17-residues peptide of bovine β-casein is transported through Caco-2 monolayer.
    Regazzo D; Mollé D; Gabai G; Tomé D; Dupont D; Leonil J; Boutrou R
    Mol Nutr Food Res; 2010 Oct; 54(10):1428-35. PubMed ID: 20397193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Permeation of Acamprosate Is Predominantly Caused by Paracellular Diffusion across Caco-2 Cell Monolayers: A Paracellular Modeling Approach.
    Antonescu IE; Rasmussen KF; Neuhoff S; Fretté X; Karlgren M; Bergström CAS; Nielsen CU; Steffansen B
    Mol Pharm; 2019 Nov; 16(11):4636-4650. PubMed ID: 31560549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides. PepT1-mediated flux of Tyr-Pro-Ile.
    Miguel M; Dávalos A; Manso MA; de la Peña G; Lasunción MA; López-Fandiño R
    Mol Nutr Food Res; 2008 Dec; 52(12):1507-13. PubMed ID: 18727013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of Dietary Anti-Inflammatory Peptide, γ-Glutamyl Valine (γ-EV), across the Intestinal Caco-2 Monolayer.
    Guha S; Alvarez S; Majumder K
    Nutrients; 2021 Apr; 13(5):. PubMed ID: 33923345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium caprate enables the blood pressure-lowering effect of Ile-Pro-Pro and Leu-Lys-Pro in spontaneously hypertensive rats by indirectly overcoming PepT1 inhibition.
    Gleeson JP; Frías JM; Ryan SM; Brayden DJ
    Eur J Pharm Biopharm; 2018 Jul; 128():179-187. PubMed ID: 29684535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis and Transport of Egg White-Derived Peptides in Caco-2 Cell Monolayers and Everted Rat Sacs.
    Wang L; Ding L; Du Z; Yu Z; Liu J
    J Agric Food Chem; 2019 May; 67(17):4839-4848. PubMed ID: 30969123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Design of Oligopeptides for Intestinal Transport Model.
    Hong SM; Tanaka M; Koyanagi R; Shen W; Matsui T
    J Agric Food Chem; 2016 Mar; 64(10):2072-9. PubMed ID: 26924013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2.
    Tamura K; Lee CP; Smith PL; Borchardt RT
    Pharm Res; 1996 Nov; 13(11):1663-7. PubMed ID: 8956331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line.
    Grès MC; Julian B; Bourrié M; Meunier V; Roques C; Berger M; Boulenc X; Berger Y; Fabre G
    Pharm Res; 1998 May; 15(5):726-33. PubMed ID: 9619781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and Transport of Spent Hen-Derived ACE-Inhibitory Peptides IWHHT, IWH, and IW in Human Intestinal Caco-2 Cell Monolayers.
    Fan H; Xu Q; Hong H; Wu J
    J Agric Food Chem; 2018 Oct; 66(43):11347-11354. PubMed ID: 30280571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hydrophobicity and molecular weight on the transport permeability of oligopeptides across Caco-2 cell monolayers.
    Wang L; Ding L; Du Z; Liu J
    J Food Biochem; 2020 May; 44(5):e13188. PubMed ID: 32173923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.