BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 29579955)

  • 21. Control of microbes on barley grains using peroxyacetic acid and electrolysed water as antimicrobial agents.
    Rood L; Koutoulis A; Bowman JP; Evans DE; Stanley RA; Kaur M
    Food Microbiol; 2018 Dec; 76():103-109. PubMed ID: 30166129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of corona discharge plasma jet on surface-borne microorganisms and sprouting of broccoli seeds.
    Kim JW; Puligundla P; Mok C
    J Sci Food Agric; 2017 Jan; 97(1):128-134. PubMed ID: 26940076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-thermal atmospheric gas plasma for decontamination of sliced cheese and changes in quality.
    Huang YM; Chen CK; Hsu CL
    Food Sci Technol Int; 2020 Dec; 26(8):715-726. PubMed ID: 32423241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microflora of barley kernels.
    FOLLSTAD MN; CHRISTENSEN CM
    Appl Microbiol; 1962 Jul; 10(4):331-6. PubMed ID: 13893856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of Cold Atmospheric Pressure Plasma (CAPP) and plasma-activated water (PAW) as alternative non-thermal decontamination technologies for tofu: Impact on microbiological, sensorial and functional quality attributes.
    Frías E; Iglesias Y; Alvarez-Ordóñez A; Prieto M; González-Raurich M; López M
    Food Res Int; 2020 Mar; 129():108859. PubMed ID: 32036881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Streptomyces strains producing mitochondriotoxic antimycin A found in cereal grains.
    Rasimus-Sahari S; Mikkola R; Andersson MA; Jestoi M; Salkinoja-Salonen M
    Int J Food Microbiol; 2016 Feb; 218():78-85. PubMed ID: 26619316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package.
    Patil S; Moiseev T; Misra NN; Cullen PJ; Mosnier JP; Keener KM; Bourke P
    J Hosp Infect; 2014 Nov; 88(3):162-9. PubMed ID: 25308932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial decontamination of onion powder using microwave-powered cold plasma treatments.
    Kim JE; Oh YJ; Won MY; Lee KS; Min SC
    Food Microbiol; 2017 Apr; 62():112-123. PubMed ID: 27889137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of cold plasma for decontamination of molds and mycotoxins in rice grain.
    Guo J; He Z; Ma C; Li W; Wang J; Lin F; Liu X; Li L
    Food Chem; 2023 Feb; 402():134159. PubMed ID: 36137380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact of cold plasma innovative technology on quality and safety of refrigerated hamburger: Analysis of microbial safety and physicochemical properties.
    Roshanak S; Maleki M; Sani MA; Tavassoli M; Pirkhezranian Z; Shahidi F
    Int J Food Microbiol; 2023 Mar; 388():110066. PubMed ID: 36610235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Microbiological quality of minimally processed vegetable salads].
    Wójcik-Stopczyńska B
    Rocz Panstw Zakl Hig; 2004; 55(2):139-45. PubMed ID: 15493346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dielectric Barrier Discharge for Solid Food Applications.
    Figueroa-Pinochet MF; Castro-Alija MJ; Tiwari BK; Jiménez JM; López-Vallecillo M; Cao MJ; Albertos I
    Nutrients; 2022 Nov; 14(21):. PubMed ID: 36364914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Updated survey of Fusarium species and toxins in Finnish cereal grains.
    Hietaniemi V; Rämö S; Yli-Mattila T; Jestoi M; Peltonen S; Kartio M; Sieviläinen E; Koivisto T; Parikka P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 May; 33(5):831-48. PubMed ID: 27002810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microdochium majus and other fungal pathogens associated with reduced gluten quality in wheat grain.
    Aamot HU; Lysøe E; Koga S; Nielsen KAG; Böcker U; Brodal G; Dill-Macky R; Uhlen AK; Hofgaard IS
    Int J Food Microbiol; 2020 Oct; 331():108712. PubMed ID: 32563775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electronic nose for microbial quality classification of grains.
    Jonsson A; Winquist F; Schnürer J; Sundgren H; Lundström I
    Int J Food Microbiol; 1997 Apr; 35(2):187-93. PubMed ID: 9105927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of amylolytic and proteolytic activities of ruminal fungi grown on cereal grains.
    Yanke LJ; Dong Y; McAllister TA; Bae HD; Cheng KJ
    Can J Microbiol; 1993 Aug; 39(8):817-20. PubMed ID: 7693316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mycological and mycotoxicological evaluation of grain.
    Baliukoniene V; Bakutis B; Stankevicius H
    Ann Agric Environ Med; 2003; 10(2):223-227. PubMed ID: 14677916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variation in the effects of take-all disease on grain yield and quality of winter cereals in field experiments.
    Gutteridge RJ; Bateman GL; Todd AD
    Pest Manag Sci; 2003 Feb; 59(2):215-24. PubMed ID: 12587875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial community dynamics of Dan'er barley grain during the industrial malting process.
    Li X; Cai G; Wu D; Zhang M; Lin C; Lu J
    Food Microbiol; 2018 Dec; 76():110-116. PubMed ID: 30166131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium, and Bacillus cereus in roasted grain powder by radio frequency heating.
    Jeong KO; Kim SS; Park SH; Kang DH
    J Appl Microbiol; 2020 Nov; 129(5):1227-1237. PubMed ID: 32418285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.