These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 29580388)

  • 1. Development of gelatin/carboxymethyl chitosan/nano-hydroxyapatite composite 3D macroporous scaffold for bone tissue engineering applications.
    Maji S; Agarwal T; Das J; Maiti TK
    Carbohydr Polym; 2018 Jun; 189():115-125. PubMed ID: 29580388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.
    Sharma C; Dinda AK; Potdar PD; Chou CF; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():416-427. PubMed ID: 27127072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications.
    Agarwal T; Narayan R; Maji S; Behera S; Kulanthaivel S; Maiti TK; Banerjee I; Pal K; Giri S
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1499-1506. PubMed ID: 27086289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering.
    Kakkar P; Verma S; Manjubala I; Madhan B
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():343-7. PubMed ID: 25491838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering.
    Kavya KC; Jayakumar R; Nair S; Chennazhi KP
    Int J Biol Macromol; 2013 Aug; 59():255-63. PubMed ID: 23591473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering.
    Kim HL; Jung GY; Yoon JH; Han JS; Park YJ; Kim DG; Zhang M; Kim DJ
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():20-5. PubMed ID: 26046263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering.
    Khan MN; Islam JM; Khan MA
    J Biomed Mater Res A; 2012 Nov; 100(11):3020-8. PubMed ID: 22707185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and properties of a highly dispersed nano-hydroxyapatite colloid used as a reinforcing filler for chitosan.
    Ying R; Wang H; Sun R; Chen K
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110689. PubMed ID: 32204004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ fabrication of nano-hydroxyapatite in a macroporous chitosan scaffold for tissue engineering.
    Chen JD; Wang Y; Chen X
    J Biomater Sci Polym Ed; 2009; 20(11):1555-65. PubMed ID: 19619396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies.
    Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM
    J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication of clinoptilolite-nanohydroxyapatite/chitosan-gelatin composite scaffold and evaluation of its effects on bone tissue engineering.
    Sadeghinia A; Soltani S; Aghazadeh M; Khalilifard J; Davaran S
    J Biomed Mater Res A; 2020 Feb; 108(2):221-233. PubMed ID: 31581359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro evaluation of biodegradable nHAP-Chitosan-Gelatin-based scaffold for tissue engineering application.
    Thariga S; Subashini R; Pavithra S; Meenachi P; Kumar P; Balashanmugam P; Senthil Kumar P
    IET Nanobiotechnol; 2019 May; 13(3):301-306. PubMed ID: 31053693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin-chitosan scaffolds for bone tissue engineering.
    Singh YP; Dasgupta S; Bhaskar R
    J Biomater Sci Polym Ed; 2019 Dec; 30(18):1756-1778. PubMed ID: 31526176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering.
    Shahbazarab Z; Teimouri A; Chermahini AN; Azadi M
    Int J Biol Macromol; 2018 Mar; 108():1017-1027. PubMed ID: 29122713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-step strategy for constructing hierarchical pore structured chitosan-hydroxyapatite composite scaffolds for bone tissue engineering.
    Li TT; Zhang Y; Ren HT; Peng HK; Lou CW; Lin JH
    Carbohydr Polym; 2021 May; 260():117765. PubMed ID: 33712123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of nanocomposite scaffolds based on TiO
    Abd-Khorsand S; Saber-Samandari S; Saber-Samandari S
    Int J Biol Macromol; 2017 Aug; 101():51-58. PubMed ID: 28315764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.