These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 29580388)
61. The effect of hydroxyapatite in biopolymer-based scaffolds on release of naproxen sodium. Asadian-Ardakani V; Saber-Samandari S; Saber-Samandari S J Biomed Mater Res A; 2016 Dec; 104(12):2992-3003. PubMed ID: 27449255 [TBL] [Abstract][Full Text] [Related]
62. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Song K; Li L; Li W; Zhu Y; Jiao Z; Lim M; Fang M; Shi F; Wang L; Liu T Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():384-92. PubMed ID: 26117769 [TBL] [Abstract][Full Text] [Related]
63. N-O, carboxymethyl chitosan enhanced scaffold porosity and biocompatibility under e-beam irradiation at 50 kGy. Lee SY; Kamarul T Int J Biol Macromol; 2014 Mar; 64():115-22. PubMed ID: 24325858 [TBL] [Abstract][Full Text] [Related]
65. Nano-composite of silk fibroin-chitosan/Nano ZrO2 for tissue engineering applications: fabrication and morphology. Teimouri A; Ebrahimi R; Emadi R; Beni BH; Chermahini AN Int J Biol Macromol; 2015 May; 76():292-302. PubMed ID: 25709014 [TBL] [Abstract][Full Text] [Related]
66. Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Zhao Y; Fan T; Chen J; Su J; Zhi X; Pan P; Zou L; Zhang Q Colloids Surf B Biointerfaces; 2019 Feb; 174():70-79. PubMed ID: 30439640 [TBL] [Abstract][Full Text] [Related]
67. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair. Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684 [TBL] [Abstract][Full Text] [Related]
68. Preparation of chitosan-gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Jiankang H; Dichen L; Yaxiong L; Bo Y; Hanxiang Z; Qin L; Bingheng L; Yi L Acta Biomater; 2009 Jan; 5(1):453-61. PubMed ID: 18675601 [TBL] [Abstract][Full Text] [Related]
69. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878 [TBL] [Abstract][Full Text] [Related]
70. Fabrication and in vitro biological activity of βTCP-Chitosan-Fucoidan composite for bone tissue engineering. Puvaneswary S; Talebian S; Raghavendran HB; Murali MR; Mehrali M; Afifi AM; Kasim NH; Kamarul T Carbohydr Polym; 2015 Dec; 134():799-807. PubMed ID: 26428187 [TBL] [Abstract][Full Text] [Related]
71. Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. Isikli C; Hasirci V; Hasirci N J Tissue Eng Regen Med; 2012 Feb; 6(2):135-43. PubMed ID: 21351375 [TBL] [Abstract][Full Text] [Related]
72. Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Lee CM; Yang SW; Jung SC; Kim BH J Nanosci Nanotechnol; 2017 Apr; 17(4):2747-750. PubMed ID: 29664596 [TBL] [Abstract][Full Text] [Related]
73. [Biomimetic nanohydroxyapatite/gelatin composite material preparation and in vitro study]. Li S; Hu X Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2014 Sep; 39(9):949-58. PubMed ID: 25269494 [TBL] [Abstract][Full Text] [Related]
74. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Lei Y; Xu Z; Ke Q; Yin W; Chen Y; Zhang C; Guo Y Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():134-142. PubMed ID: 28024569 [TBL] [Abstract][Full Text] [Related]
75. Preparation of three-dimensional macroporous chitosan-gelatin B microspheres and HepG2-cell culture. Huang F; Cui L; Peng CH; Wu XB; Han BS; Dong YD J Tissue Eng Regen Med; 2016 Dec; 10(12):1033-1040. PubMed ID: 24729421 [TBL] [Abstract][Full Text] [Related]
76. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Preethi Soundarya S; Haritha Menon A; Viji Chandran S; Selvamurugan N Int J Biol Macromol; 2018 Nov; 119():1228-1239. PubMed ID: 30107161 [TBL] [Abstract][Full Text] [Related]
77. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts. Ji J; Tong X; Huang X; Wang T; Lin Z; Cao Y; Zhang J; Dong L; Qin H; Hu Q Biomed Mater; 2015 Jul; 10(4):045005. PubMed ID: 26154827 [TBL] [Abstract][Full Text] [Related]
78. Fabrication and characterization of 3D printing biocompatible crocin-loaded chitosan/collagen/hydroxyapatite-based scaffolds for bone tissue engineering applications. Jirofti N; Hashemi M; Moradi A; Kalalinia F Int J Biol Macromol; 2023 Dec; 252():126279. PubMed ID: 37572811 [TBL] [Abstract][Full Text] [Related]
79. Construction of a fluorescent nanostructured chitosan-hydroxyapatite scaffold by nanocrystallon induced biomimetic mineralization and its cell biocompatibility. Wang G; Zheng L; Zhao H; Miao J; Sun C; Liu H; Huang Z; Yu X; Wang J; Tao X ACS Appl Mater Interfaces; 2011 May; 3(5):1692-701. PubMed ID: 21491931 [TBL] [Abstract][Full Text] [Related]
80. Biosynthesis and characterization of hydroxyapatite and its composite (hydroxyapatite-gelatin-chitosan-fibrin-bone ash) for bone tissue engineering applications. Sathiyavimal S; Vasantharaj S; LewisOscar F; Pugazhendhi A; Subashkumar R Int J Biol Macromol; 2019 May; 129():844-852. PubMed ID: 30769044 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]