BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29580395)

  • 1. Isolation and characterization of cellulose nanofibrils from Colombian Fique decortication by-products.
    Ovalle-Serrano SA; Gómez FN; Blanco-Tirado C; Combariza MY
    Carbohydr Polym; 2018 Jun; 189():169-177. PubMed ID: 29580395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth.
    Cao Y; Jiang Y; Song Y; Cao S; Miao M; Feng X; Fang J; Shi L
    Carbohydr Polym; 2015 Oct; 131():152-8. PubMed ID: 26256171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valorization of Colombian fique (Furcraea bedinghausii) for production of cellulose nanofibers and its application in hydrogels.
    Guancha-Chalapud MA; Gálvez J; Serna-Cock L; Aguilar CN
    Sci Rep; 2020 Jul; 10(1):11637. PubMed ID: 32669583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility.
    Luo J; Semenikhin N; Chang H; Moon RJ; Kumar S
    Carbohydr Polym; 2018 Feb; 181():247-255. PubMed ID: 29253969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose nanofibrils (CNFs) from Ammophila arenaria, a natural and a fast growing grass plant.
    Jebali Z; Nabili A; Majdoub H; Boufi S
    Int J Biol Macromol; 2018 Feb; 107(Pt A):530-536. PubMed ID: 28911807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Biobased Textile Fiber from Colombian Agro-Industrial Waste Fiber.
    Amaya Vergara MC; Cortés Gómez MP; Restrepo Restrepo MC; Manrique Henao J; Pereira Soto MA; Gañán Rojo PF; Castro Herazo CI; Zuluaga Gallego R
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30326560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel processing parameters for the extraction of cellulose nanofibres (CNF) from environmentally benign pineapple leaf fibres (PALF): Structure-property relationships.
    Ravindran L; M S S; Thomas S
    Int J Biol Macromol; 2019 Jun; 131():858-870. PubMed ID: 30904530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites.
    Hamou KB; Kaddami H; Dufresne A; Boufi S; Magnin A; Erchiqui F
    Carbohydr Polym; 2018 Feb; 181():1061-1070. PubMed ID: 29253932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the Addition of Fique Bagasse Cellulose Nanoparticles on the Mechanical and Structural Properties of Plastic Flexible Films from Cassava Starch.
    Palechor-Trochez JJ; Chantre-López AR; Argote-Ortiz E; Villada-Castillo HS; Solanilla-Duque JF
    Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of fique fibers and its processing by-products on morphology, thermal and mechanical properties of epoxy based biocomposites.
    Centeno-Mesa N; Lombana-Toro O; Correa-Aguirre JP; Hidalgo-Salazar MA
    Sci Rep; 2022 Sep; 12(1):15143. PubMed ID: 36071075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils.
    Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S
    Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose nanofibrils extracted from the byproduct of cotton plant.
    Miao X; Lin J; Tian F; Li X; Bian F; Wang J
    Carbohydr Polym; 2016 Jan; 136():841-50. PubMed ID: 26572420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods.
    Van Hai L; Zhai L; Kim HC; Kim JW; Choi ES; Kim J
    Carbohydr Polym; 2018 Jul; 191():65-70. PubMed ID: 29661322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose Nanofibers from Softwood, Hardwood, and Tunicate: Preparation-Structure-Film Performance Interrelation.
    Zhao Y; Moser C; Lindström ME; Henriksson G; Li J
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13508-13519. PubMed ID: 28350431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect.
    Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN
    Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new quality index for benchmarking of different cellulose nanofibrils.
    Desmaisons J; Boutonnet E; Rueff M; Dufresne A; Bras J
    Carbohydr Polym; 2017 Oct; 174():318-329. PubMed ID: 28821073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications.
    Bakkari ME; Bindiganavile V; Goncalves J; Boluk Y
    Carbohydr Polym; 2019 Jan; 203():238-245. PubMed ID: 30318209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and rheology of aqueous suspensions and hydrogels of cellulose nanofibrils: Effect of volume fraction and ionic strength.
    Fneich F; Ville J; Seantier B; Aubry T
    Carbohydr Polym; 2019 May; 211():315-321. PubMed ID: 30824095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of sodium and chloride ions from aqueous solutions using fique fibers (Furcraea spp.).
    Agudelo N; Hinestroza JP; Husserl J
    Water Sci Technol; 2016; 73(5):1197-201. PubMed ID: 26942543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration.
    Sehaqui H; Kulasinski K; Pfenninger N; Zimmermann T; Tingaut P
    Biomacromolecules; 2017 Jan; 18(1):242-248. PubMed ID: 27958715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.