These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29580395)

  • 21. Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover.
    Xu J; Krietemeyer EF; Boddu VM; Liu SX; Liu WC
    Carbohydr Polym; 2018 Jul; 192():202-207. PubMed ID: 29691014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fique Fabric: A Promising Reinforcement for Polymer Composites.
    Neves Monteiro S; Salgado de Assis F; Ferreira CL; Tonini Simonassi N; Pondé Weber R; Souza Oliveira M; Colorado HA; Camposo Pereira A
    Polymers (Basel); 2018 Feb; 10(3):. PubMed ID: 30966281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization.
    Lu Y; Cueva MC; Lara-Curzio E; Ozcan S
    Carbohydr Polym; 2015 Oct; 131():208-17. PubMed ID: 26256177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ion conductivity through TEMPO-mediated oxidated and periodate oxidated cellulose membranes.
    Dahlström C; López Durán V; Keene ST; Salleo A; Norgren M; Wågberg L
    Carbohydr Polym; 2020 Apr; 233():115829. PubMed ID: 32059883
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of pH on Nanofibrillation of TEMPO-Oxidized Paper Mulberry Bast Fibers.
    Park JY; Park CW; Han SY; Kwon GJ; Kim NH; Lee SH
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellulose and lignocellulose nanofibril suspensions and films: A comparison.
    Amini E; Hafez I; Tajvidi M; Bousfield DW
    Carbohydr Polym; 2020 Dec; 250():117011. PubMed ID: 33049872
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regioselectively Carboxylated Cellulose Nanofibril Models from Dissolving Pulp: C6 via TEMPO Oxidation and C2,C3 via Periodate-Chlorite Oxidation.
    Guo M; Ede JD; Sayes CM; Shatkin JA; Stark N; Hsieh YL
    Nanomaterials (Basel); 2024 Mar; 14(5):. PubMed ID: 38470807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ
    Micron; 2015 May; 72():28-33. PubMed ID: 25768897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellulose nanofibrils aerogels generated from jute fibers.
    Lin J; Yu L; Tian F; Zhao N; Li X; Bian F; Wang J
    Carbohydr Polym; 2014 Aug; 109():35-43. PubMed ID: 24815398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rheology of semi-dilute suspensions of carboxylated cellulose nanofibrils.
    Jowkarderis L; van de Ven TG
    Carbohydr Polym; 2015 Jun; 123():416-23. PubMed ID: 25843875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-energy preparation of cellulose nanofibers from sugarcane bagasse by modulating the surface charge density.
    Pinto LO; Bernardes JS; Rezende CA
    Carbohydr Polym; 2019 Aug; 218():145-153. PubMed ID: 31221315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tuning rheology and aggregation behaviour of TEMPO-oxidised cellulose nanofibrils aqueous suspensions by addition of different acids.
    Alves L; Ferraz E; Lourenço AF; Ferreira PJ; Rasteiro MG; Gamelas JAF
    Carbohydr Polym; 2020 Jun; 237():116109. PubMed ID: 32241451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical Properties of Composite Hydrogels of Alginate and Cellulose Nanofibrils.
    Aarstad O; Heggset EB; Pedersen IS; Bjørnøy SH; Syverud K; Strand BL
    Polymers (Basel); 2017 Aug; 9(8):. PubMed ID: 30971055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of Nanofibrillated Cellulose by Combined Ammonium Persulphate Treatment with Ultrasound and Mechanical Processing.
    Filipova I; Fridrihsone V; Cabulis U; Berzins A
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30134631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper(II) and a positively charged dye.
    Sehaqui H; Perez de Larraya U; Tingaut P; Zimmermann T
    Soft Matter; 2015 Jul; 11(26):5294-300. PubMed ID: 26052685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Processing strategy for reduced energy demand of nanostructured CNF/clay composites with tailored interfaces.
    Yang X; Li L; Nishiyama Y; Reid MS; Berglund LA
    Carbohydr Polym; 2023 Jul; 312():120788. PubMed ID: 37059528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current Progress in Rheology of Cellulose Nanofibril Suspensions.
    Nechyporchuk O; Belgacem MN; Pignon F
    Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extraction of cellulose nanofibrils from pine sawdust by integrated chemical pretreatment.
    Miao X; Hua W; Li Y; Bian F; Xiao T
    Heliyon; 2024 Feb; 10(3):e25355. PubMed ID: 38327437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxicity using human skin cells.
    Nordli HR; Chinga-Carrasco G; Rokstad AM; Pukstad B
    Carbohydr Polym; 2016 Oct; 150():65-73. PubMed ID: 27312614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simple centrifugal fractionation to reduce the size distribution of cellulose nanofibers.
    Zhai L; Kim HC; Kim JW; Kim J
    Sci Rep; 2020 Jul; 10(1):11744. PubMed ID: 32678164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.