These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29580397)

  • 21. Molecular simulation, characteristics and mechanism of thermal-responsive acetylated amylose V-type helical complexes.
    Tang P; Liu Y; Gao Y; Wang Y; Zhang H; Liu Y; Wu D
    J Mater Chem B; 2021 Apr; 9(15):3389-3400. PubMed ID: 33881436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative Assessment of the Conformational Heterogeneity in Amylose across Force Fields.
    Koneru JK; Zhu X; Mondal J
    J Chem Theory Comput; 2019 Nov; 15(11):6203-6212. PubMed ID: 31560849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complexation process of amylose under different concentrations of linoleic acid using molecular dynamics simulation.
    Cheng L; Zhu X; Hamaker BR; Zhang H; Campanella OH
    Carbohydr Polym; 2019 Jul; 216():157-166. PubMed ID: 31047052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of methylation on the stability and solvation free energy of amylose and cellulose fragments: a molecular dynamics study.
    Yu H; Amann M; Hansson T; Köhler J; Wich G; van Gunsteren WF
    Carbohydr Res; 2004 Jul; 339(10):1697-709. PubMed ID: 15220079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polysaccharide-hair cationic polypeptide nanogels: self-assembly and enzymatic polymerization of amylose primer-modified cholesteryl poly(L-lysine).
    Morimoto N; Yamazaki M; Tamada J; Akiyoshi K
    Langmuir; 2013 Jun; 29(24):7509-14. PubMed ID: 23621379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular modelling of the specific interactions involved in the amylose complexation by fatty acids.
    Godet MC; Tran V; Delage MM; Buléon A
    Int J Biol Macromol; 1993 Feb; 15(1):11-6. PubMed ID: 8443126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable properties of inclusion complexes between amylose and polytetrahydrofuran.
    Rachmawati R; Woortman AJ; Loos K
    Macromol Biosci; 2013 Jun; 13(6):767-76. PubMed ID: 23610062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inclusion Complexes Between Polytetrahydrofuran-b-Amylose Block Copolymers and Polytetrahydrofuran Chains.
    Rachmawati R; Woortman AJ; Kumar K; Loos K
    Macromol Biosci; 2015 Jun; 15(6):812-28. PubMed ID: 25706353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interfacial activity and emulsifying behaviour of inclusion complexes between helical polysaccharides and flavouring molecules resulting from non-covalent interactions.
    De Fenoyl L; Hirel D; Perez E; Lecomte S; Morvan E; Delample M
    Food Res Int; 2018 Mar; 105():801-811. PubMed ID: 29433276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different structures of heterogeneous starch granules from high-amylose rice.
    Man J; Lin L; Wang Z; Wang Y; Liu Q; Wei C
    J Agric Food Chem; 2014 Nov; 62(46):11254-63. PubMed ID: 25373551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amylose-grafted Curdlan: A New Class of Semi-artificial Branched Polysaccharides for Hierarchical Polymeric Superstructures Created by the Action of "Orthogonal" Binding Sites.
    Tamaru SI; Honzaki M; Kamogawa K; Hori K; Kubo M; Kuroda N; Shinkai S
    Chem Asian J; 2019 Jun; 14(12):2102-2107. PubMed ID: 30997743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose).
    Gessler K; Usón I; Takaha T; Krauss N; Smith SM; Okada S; Sheldrick GM; Saenger W
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4246-51. PubMed ID: 10200247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural investigation of amylose complexes with small ligands: helical conformation, crystalline structure and thermostability.
    Le Bail P; Rondeau C; Buléon A
    Int J Biol Macromol; 2005 Mar; 35(1-2):1-7. PubMed ID: 15769508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Side-chain-dependent helical conformation of amylose alkylcarbamates: amylose tris(ethylcarbamate) and amylose tris(n-hexylcarbamate).
    Terao K; Maeda F; Oyamada K; Ochiai T; Kitamura S; Sato T
    J Phys Chem B; 2012 Oct; 116(42):12714-20. PubMed ID: 23039368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative study of spring dextrin impact on amylose retrogradation.
    Xu J; Zhao W; Ning Y; Jin Z; Xu B; Xu X
    J Agric Food Chem; 2012 May; 60(19):4970-6. PubMed ID: 22536814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. V
    Fan H; Chen Z; Ma R; Wen Y; Li H; Wang J; Sun B
    Carbohydr Polym; 2022 Dec; 298():120065. PubMed ID: 36241264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of anomeric configuration on mechanochemical degradation of polysaccharides: cellulose versus amylose.
    Striegel AM
    Biomacromolecules; 2007 Dec; 8(12):3944-9. PubMed ID: 18030997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of type 4 resistant starch and maltodextrins from amylose and amylopectin upon dry heating: A model study.
    Nunes FM; Lopes ES; Moreira AS; Simões J; Coimbra MA; Domingues RM
    Carbohydr Polym; 2016 May; 141():253-62. PubMed ID: 26877020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gramicidin D conformation, dynamics and membrane ion transport.
    Burkhart BM; Gassman RM; Langs DA; Pangborn WA; Duax WL; Pletnev V
    Biopolymers; 1999; 51(2):129-44. PubMed ID: 10397797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Utilization of amylose-lipid complexes as molecular nanocapsules for conjugated linoleic Acid.
    Lalush I; Bar H; Zakaria I; Eichler S; Shimoni E
    Biomacromolecules; 2005; 6(1):121-30. PubMed ID: 15638512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.