These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29580403)

  • 1. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines.
    Kuzmenko V; Karabulut E; Pernevik E; Enoksson P; Gatenholm P
    Carbohydr Polym; 2018 Jun; 189():22-30. PubMed ID: 29580403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printed Conductive Nanocellulose Scaffolds for the Differentiation of Human Neuroblastoma Cells.
    Bordoni M; Karabulut E; Kuzmenko V; Fantini V; Pansarasa O; Cereda C; Gatenholm P
    Cells; 2020 Mar; 9(3):. PubMed ID: 32168750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired 3D printable pectin-nanocellulose ink formulations.
    Cernencu AI; Lungu A; Stancu IC; Serafim A; Heggset E; Syverud K; Iovu H
    Carbohydr Polym; 2019 Sep; 220():12-21. PubMed ID: 31196530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium.
    Pedrotty DM; Kuzmenko V; Karabulut E; Sugrue AM; Livia C; Vaidya VR; McLeod CJ; Asirvatham SJ; Gatenholm P; Kapa S
    Circ Arrhythm Electrophysiol; 2019 Mar; 12(3):e006920. PubMed ID: 30845835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds.
    Kuzmenko V; Kalogeropoulos T; Thunberg J; Johannesson S; Hägg D; Enoksson P; Gatenholm P
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():14-23. PubMed ID: 26478282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.
    Shin SR; Farzad R; Tamayol A; Manoharan V; Mostafalu P; Zhang YS; Akbari M; Jung SM; Kim D; Comotto M; Annabi N; Al-Hazmi FE; Dokmeci MR; Khademhosseini A
    Adv Mater; 2016 May; 28(17):3280-9. PubMed ID: 26915715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel.
    Sultan S; Mathew AP
    Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing and properties of cellulose nanofibrils-reinforced quince seed mucilage bio-inks.
    Baniasadi H; Polez RT; Kimiaei E; Madani Z; Rojas OJ; Österberg M; Seppälä J
    Int J Biol Macromol; 2021 Dec; 192():1098-1107. PubMed ID: 34666132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Engineered Biomimetic Inks Based on UV Cross-Linkable Wood Biopolymers for 3D Printing.
    Xu W; Zhang X; Yang P; Långvik O; Wang X; Zhang Y; Cheng F; Österberg M; Willför S; Xu C
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12389-12400. PubMed ID: 30844234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks.
    Baniasadi H; Kimiaei E; Polez RT; Ajdary R; Rojas OJ; Österberg M; Seppälä J
    Int J Biol Macromol; 2022 Jun; 209(Pt B):2020-2031. PubMed ID: 35500781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering.
    Ho CM; Mishra A; Lin PT; Ng SH; Yeong WY; Kim YJ; Yoon YJ
    Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27892655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.
    Markstedt K; Escalante A; Toriz G; Gatenholm P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40878-40886. PubMed ID: 29068193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocellulosic materials as bioinks for 3D bioprinting.
    Piras CC; Fernández-Prieto S; De Borggraeve WM
    Biomater Sci; 2017 Sep; 5(10):1988-1992. PubMed ID: 28829453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocellulose and its Composites for Biomedical Applications.
    Dumanli AG
    Curr Med Chem; 2017; 24(5):512-528. PubMed ID: 27758719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrohydrodynamic 3D printing of microscale poly (ε-caprolactone) scaffolds with multi-walled carbon nanotubes.
    He J; Xu F; Dong R; Guo B; Li D
    Biofabrication; 2017 Jan; 9(1):015007. PubMed ID: 28052044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review.
    Distler T; Boccaccini AR
    Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels.
    Baniasadi H; Ajdary R; Trifol J; Rojas OJ; Seppälä J
    Carbohydr Polym; 2021 Aug; 266():118114. PubMed ID: 34044931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds.
    Ajdary R; Huan S; Zanjanizadeh Ezazi N; Xiang W; Grande R; Santos HA; Rojas OJ
    Biomacromolecules; 2019 Jul; 20(7):2770-2778. PubMed ID: 31117356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells.
    Huang L; Yuan W; Hong Y; Fan S; Yao X; Ren T; Song L; Yang G; Zhang Y
    Cellulose (Lond); 2021; 28(1):241-257. PubMed ID: 33132545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.