These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29580518)

  • 1. A different approach for the analysis of grapes: Using the skin as sensing element.
    Muñoz R; García-Hernández C; Medina-Plaza C; García-Cabezón C; Fernández-Escudero JA; Barajas E; Medrano G; Rodriguez-Méndez ML
    Food Res Int; 2018 May; 107():544-550. PubMed ID: 29580518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Array of biosensors for discrimination of grapes according to grape variety, vintage and ripeness.
    Medina-Plaza C; de Saja JA; Fernández-Escudero JA; Barajas E; Medrano G; Rodriguez-Mendez ML
    Anal Chim Acta; 2016 Dec; 947():16-22. PubMed ID: 27846985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of technological maturity of grapes and total phenolic compounds of grape skins in red and white cultivars during ripening by near infrared hyperspectral image: a preliminary approach.
    Nogales-Bueno J; Hernández-Hierro JM; Rodríguez-Pulido FJ; Heredia FJ
    Food Chem; 2014; 152():586-91. PubMed ID: 24444979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring the Phenolic Ripening of Red Grapes Using a Multisensor System Based on Metal-Oxide Nanoparticles.
    Garcia-Hernandez C; Medina-Plaza C; Garcia-Cabezon C; Blanco Y; Fernandez-Escudero JA; Barajas-Tola E; Rodriguez-Perez MA; Martin-Pedrosa F; Rodriguez-Mendez ML
    Front Chem; 2018; 6():131. PubMed ID: 29740576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of parameters related to grape ripening by multivariate calibration of voltammetric signals acquired by an electronic tongue.
    Pigani L; Vasile Simone G; Foca G; Ulrici A; Masino F; Cubillana-Aguilera L; Calvini R; Seeber R
    Talanta; 2018 Feb; 178():178-187. PubMed ID: 29136810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between hyperspectral indices, agronomic parameters and phenolic composition of Vitis vinifera cv Tempranillo grapes.
    García-Estévez I; Quijada-Morín N; Rivas-Gonzalo JC; Martínez-Fernández J; Sánchez N; Herrero-Jiménez CM; Escribano-Bailón MT
    J Sci Food Agric; 2017 Sep; 97(12):4066-4074. PubMed ID: 28397240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling phenolic and technological maturities of grapes by means of the multivariate relation between organoleptic and physicochemical properties.
    Meléndez E; Ortiz MC; Sarabia LA; Íñiguez M; Puras P
    Anal Chim Acta; 2013 Jan; 761():53-61. PubMed ID: 23312314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas.
    Torchio F; Cagnasso E; Gerbi V; Rolle L
    Anal Chim Acta; 2010 Feb; 660(1-2):183-9. PubMed ID: 20103161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of non-anthocyanin polyphenol accumulation in the berry skins of muscadine and European grapes during ripening in China.
    Song S; Wei Z; Huang Y; Guo W; Zhang Y; Yin L; Qu J; Lu J
    J Food Biochem; 2019 Jun; 43(6):e12696. PubMed ID: 31353614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of near infrared hyperspectral tools for the screening of extractable polyphenols in red grape skins.
    Nogales-Bueno J; Baca-Bocanegra B; Rodríguez-Pulido FJ; Heredia FJ; Hernández-Hierro JM
    Food Chem; 2015 Apr; 172():559-64. PubMed ID: 25442592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Electrochemical Quartz Crystal Microbalance Multisensor System Based on Phthalocyanine Nanostructured Films: Discrimination of Musts.
    Garcia-Hernandez C; Medina-Plaza C; Garcia-Cabezon C; Martin-Pedrosa F; del Valle I; Antonio de Saja J; Rodríguez-Méndez ML
    Sensors (Basel); 2015 Nov; 15(11):29233-49. PubMed ID: 26610494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Study of the Phenolic and Technological Maturities of Red Grapes Grown in Lebanon.
    Rajha HN; Darra NE; Kantar SE; Hobaika Z; Louka N; Maroun RG
    Antioxidants (Basel); 2017 Jan; 6(1):. PubMed ID: 28134785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of FT-MIR spectroscopy for fast control of red grape phenolic ripening.
    Fragoso S; Aceña L; Guasch J; Busto O; Mestres M
    J Agric Food Chem; 2011 Mar; 59(6):2175-83. PubMed ID: 21329398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenolic compositions of grapes and wines from cultivar cAbernet Sauvignon produced in Chile and their relationship to commercial value.
    Cáceres A; Peña-Neira A; Galvez A; Obreque-Slier E; López-Solís R; Canals JM
    J Agric Food Chem; 2012 Sep; 60(35):8694-702. PubMed ID: 22860632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of fortified, sfursat, and passito wines produced from fresh and dehydrated grapes of aromatic black cv. Moscato nero (Vitis vinifera L.).
    Ossola C; Giacosa S; Torchio F; Río Segade S; Caudana A; Cagnasso E; Gerbi V; Rolle L
    Food Res Int; 2017 Aug; 98():59-67. PubMed ID: 28610733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between Agronomic Parameters, Phenolic Composition of Grape Skin, and Texture Properties of Vitis vinifera L. cv. Tempranillo.
    García-Estévez I; Andrés-García P; Alcalde-Eon C; Giacosa S; Rolle L; Rivas-Gonzalo JC; Quijada-Morín N; Escribano-Bailón MT
    J Agric Food Chem; 2015 Sep; 63(35):7663-9. PubMed ID: 25916251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility study on the use of a portable micro near infrared spectroscopy device for the "in vineyard" screening of extractable polyphenols in red grape skins.
    Baca-Bocanegra B; Hernández-Hierro JM; Nogales-Bueno J; Heredia FJ
    Talanta; 2019 Jan; 192():353-359. PubMed ID: 30348402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of grape density and harvest date on changes in phenolic composition, phenol extractability indices, and instrumental texture properties during ripening.
    Rolle L; Segade SR; Torchio F; Giacosa S; Cagnasso E; Marengo F; Gerbi V
    J Agric Food Chem; 2011 Aug; 59(16):8796-805. PubMed ID: 21749143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of three extraction methods used to evaluate phenolic ripening in red grapes.
    Fragoso S; Mestres M; Busto O; Guasch J
    J Agric Food Chem; 2010 Apr; 58(7):4071-6. PubMed ID: 20205450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue.
    Garcia-Cabezon C; Gobbi Teixeira G; Dias LG; Salvo-Comino C; García-Hernandez C; Rodriguez-Mendez ML; Martin-Pedrosa F
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32727151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.