These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29580853)

  • 1. FEM simulation of EM field effect on body tissues with bio-nanofluid (blood with nanoparticles) for nanoparticle mediated hyperthermia.
    Goyal R; Bhargava R
    Math Biosci; 2018 Jun; 300():76-86. PubMed ID: 29580853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and analytical characterization of bioheat transfer during radiofrequency ablation.
    Wang K; Tavakkoli F; Wang S; Vafai K
    J Biomech; 2015 Apr; 48(6):930-40. PubMed ID: 25769731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.
    Soetaert F; Dupré L; Ivkov R; Crevecoeur G
    Biomed Tech (Berl); 2015 Oct; 60(5):491-504. PubMed ID: 26351900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia.
    Vicentini M; Vassallo M; Ferrero R; Androulakis I; Manzin A
    Comput Methods Programs Biomed; 2022 Aug; 223():106975. PubMed ID: 35792363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic nanoparticles for interstitial thermotherapy--feasibility, tolerance and achieved temperatures.
    Wust P; Gneveckow U; Johannsen M; Böhmer D; Henkel T; Kahmann F; Sehouli J; Felix R; Ricke J; Jordan A
    Int J Hyperthermia; 2006 Dec; 22(8):673-85. PubMed ID: 17390997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a new theoretical model for blood-CNTs effective thermal conductivity pertaining to hyperthermia therapy of glioblastoma multiform.
    Benos L; Spyrou LA; Sarris IE
    Comput Methods Programs Biomed; 2019 Apr; 172():79-85. PubMed ID: 30902129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local thermal non-equilibrium bioheat transfer model for interstitial hyperthermia treatment of tumour cell: A numerical approach.
    Dinda A; Acharya J; Bhanja D; Nath S
    J Therm Biol; 2022 Dec; 110():103368. PubMed ID: 36462865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel.
    Salloum M; Ma RH; Weeks D; Zhu L
    Int J Hyperthermia; 2008 Jun; 24(4):337-45. PubMed ID: 18465418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field.
    Lv YG; Deng ZS; Liu J
    IEEE Trans Nanobioscience; 2005 Dec; 4(4):284-94. PubMed ID: 16433294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical study on the multi-region bio-heat equation to model magnetic fluid hyperthermia (MFH) using low Curie temperature nanoparticles.
    Zhang C; Johnson DT; Brazel CS
    IEEE Trans Nanobioscience; 2008 Dec; 7(4):267-75. PubMed ID: 19203870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Summary of numerical analyses for therapeutic uses of laser-activated gold nanoparticles.
    Mesicek J; Kuca K
    Int J Hyperthermia; 2018 Dec; 34(8):1255-1264. PubMed ID: 29447018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia.
    Kandala SK; Liapi E; Whitcomb LL; Attaluri A; Ivkov R
    Int J Hyperthermia; 2019; 36(1):115-129. PubMed ID: 30541354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D in silico study of magnetic fluid hyperthermia of breast tumor using Fe
    Suleman M; Riaz S
    J Therm Biol; 2020 Jul; 91():102635. PubMed ID: 32716877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.
    Kumar P; Kumar D; Rai KN
    J Therm Biol; 2015; 49-50():98-105. PubMed ID: 25774032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the solution of the non-linear bio-heat equation.
    Bardati F; Gerosa G
    J Biomech; 1990; 23(8):791-8. PubMed ID: 2384491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The modelling of heating a tissue subjected to external electromagnetic field.
    Majchrzak E; Dziatkiewicz G; Paruch M
    Acta Bioeng Biomech; 2008; 10(2):29-37. PubMed ID: 19031995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A methodology for determining optimal thermal damage in magnetic nanoparticle hyperthermia cancer treatment.
    Mital M; Tafreshi HV
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):205-13. PubMed ID: 25099326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of the pulsating heat source effects in a tumor tissue.
    Andreozzi A; Brunese L; Iasiello M; Tucci C; Vanoli GP
    Comput Methods Programs Biomed; 2021 Mar; 200():105887. PubMed ID: 33280933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia.
    Bellizzi G; Bucci OM
    Int J Hyperthermia; 2010; 26(4):389-403. PubMed ID: 20210609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of magnetic hyperthermia ablation of breast tumor on an anatomically realistic breast phantom.
    Rahpeima R; Lin CA
    PLoS One; 2022; 17(9):e0274801. PubMed ID: 36129953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.