These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
630 related articles for article (PubMed ID: 29580896)
21. Modeling the Genetic Regulation of Cancer Metabolism: Interplay between Glycolysis and Oxidative Phosphorylation. Yu L; Lu M; Jia D; Ma J; Ben-Jacob E; Levine H; Kaipparettu BA; Onuchic JN Cancer Res; 2017 Apr; 77(7):1564-1574. PubMed ID: 28202516 [TBL] [Abstract][Full Text] [Related]
22. Harnessing impaired energy metabolism in cancer cell: small molecule- mediated ways to regulate tumorigenesis. Govardhan KS; Ramyasri K; Kethora D; Ravishekar Y; Prasenjit M Anticancer Agents Med Chem; 2011 Mar; 11(3):272-9. PubMed ID: 21434854 [TBL] [Abstract][Full Text] [Related]
23. 3-BrPA eliminates human bladder cancer cells with highly oncogenic signatures via engagement of specific death programs and perturbation of multiple signaling and metabolic determinants. Konstantakou EG; Voutsinas GE; Velentzas AD; Basogianni AS; Paronis E; Balafas E; Kostomitsopoulos N; Syrigos KN; Anastasiadou E; Stravopodis DJ Mol Cancer; 2015 Jul; 14():135. PubMed ID: 26198749 [TBL] [Abstract][Full Text] [Related]
24. The Warburg effect in 2012. Bayley JP; Devilee P Curr Opin Oncol; 2012 Jan; 24(1):62-7. PubMed ID: 22123234 [TBL] [Abstract][Full Text] [Related]
25. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. Frattaruolo L; Brindisi M; Curcio R; Marra F; Dolce V; Cappello AR Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825551 [TBL] [Abstract][Full Text] [Related]
26. SCO2 Mediates Oxidative Stress-Induced Glycolysis to Oxidative Phosphorylation Switch in Hematopoietic Stem Cells. Du W; Amarachintha S; Wilson AF; Pang Q Stem Cells; 2016 Apr; 34(4):960-71. PubMed ID: 26676373 [TBL] [Abstract][Full Text] [Related]
27. Effect of Mutant p53 Proteins on Glycolysis and Mitochondrial Metabolism. Eriksson M; Ambroise G; Ouchida AT; Lima Queiroz A; Smith D; Gimenez-Cassina A; Iwanicki MP; Muller PA; Norberg E; Vakifahmetoglu-Norberg H Mol Cell Biol; 2017 Dec; 37(24):. PubMed ID: 28993478 [No Abstract] [Full Text] [Related]
28. Targeting the Warburg effect for cancer treatment: Ketogenic diets for management of glioma. Poff A; Koutnik AP; Egan KM; Sahebjam S; D'Agostino D; Kumar NB Semin Cancer Biol; 2019 Jun; 56():135-148. PubMed ID: 29294371 [TBL] [Abstract][Full Text] [Related]
29. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Ganapathy-Kanniappan S Crit Rev Biochem Mol Biol; 2018 Dec; 53(6):667-682. PubMed ID: 30668176 [TBL] [Abstract][Full Text] [Related]
30. Clinical development of cancer therapeutics that target metabolism. Clem BF; O'Neal J; Klarer AC; Telang S; Chesney J QJM; 2016 Jun; 109(6):367-72. PubMed ID: 26428335 [TBL] [Abstract][Full Text] [Related]
31. Role of multifaceted regulators in cancer glucose metabolism and their clinical significance. Zhao L; Mao Y; Zhao Y; Cao Y; Chen X Oncotarget; 2016 May; 7(21):31572-85. PubMed ID: 26934324 [TBL] [Abstract][Full Text] [Related]
32. Cancer cell metabolism: implications for therapeutic targets. Jang M; Kim SS; Lee J Exp Mol Med; 2013 Oct; 45(10):e45. PubMed ID: 24091747 [TBL] [Abstract][Full Text] [Related]
33. Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: targeting Warburg effect to fight cancer. Zawacka-Pankau J; Grinkevich VV; Hünten S; Nikulenkov F; Gluch A; Li H; Enge M; Kel A; Selivanova G J Biol Chem; 2011 Dec; 286(48):41600-41615. PubMed ID: 21862591 [TBL] [Abstract][Full Text] [Related]
34. Targeting glucose metabolism: an emerging concept for anticancer therapy. Madhok BM; Yeluri S; Perry SL; Hughes TA; Jayne DG Am J Clin Oncol; 2011 Dec; 34(6):628-35. PubMed ID: 20805739 [TBL] [Abstract][Full Text] [Related]
35. Metabolic Heterogeneity of Cancer Cells: An Interplay between HIF-1, GLUTs, and AMPK. Moldogazieva NT; Mokhosoev IM; Terentiev AA Cancers (Basel); 2020 Apr; 12(4):. PubMed ID: 32252351 [TBL] [Abstract][Full Text] [Related]
36. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Ni X; Lu CP; Xu GQ; Ma JJ Acta Pharmacol Sin; 2024 Aug; 45(8):1533-1555. PubMed ID: 38622288 [TBL] [Abstract][Full Text] [Related]
37. Targeting autophagy to overcome drug resistance in cancer therapy. Kumar A; Singh UK; Chaudhary A Future Med Chem; 2015 Aug; 7(12):1535-42. PubMed ID: 26334206 [TBL] [Abstract][Full Text] [Related]
38. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Pathania D; Millard M; Neamati N Adv Drug Deliv Rev; 2009 Nov; 61(14):1250-75. PubMed ID: 19716393 [TBL] [Abstract][Full Text] [Related]
39. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Smolková K; Plecitá-Hlavatá L; Bellance N; Benard G; Rossignol R; Ježek P Int J Biochem Cell Biol; 2011 Jul; 43(7):950-68. PubMed ID: 20460169 [TBL] [Abstract][Full Text] [Related]
40. Molecular Pathways: Targeting Cellular Energy Metabolism in Cancer via Inhibition of SLC2A1 and LDHA. Ooi AT; Gomperts BN Clin Cancer Res; 2015 Jun; 21(11):2440-4. PubMed ID: 25838393 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]