These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 29580919)

  • 41. Mitochondrial dysfunction in Parkinson's disease.
    Bose A; Beal MF
    J Neurochem; 2016 Oct; 139 Suppl 1():216-231. PubMed ID: 27546335
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mitophagy and the mitochondrial unfolded protein response in neurodegeneration and bacterial infection.
    Pellegrino MW; Haynes CM
    BMC Biol; 2015 Apr; 13():22. PubMed ID: 25857750
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sirtuin function in aging heart and vessels.
    Cencioni C; Spallotta F; Mai A; Martelli F; Farsetti A; Zeiher AM; Gaetano C
    J Mol Cell Cardiol; 2015 Jun; 83():55-61. PubMed ID: 25579854
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mitochondrial regulation of cardiac aging.
    Wang Y; Li Y; He C; Gou B; Song M
    Biochim Biophys Acta Mol Basis Dis; 2019 Jul; 1865(7):1853-1864. PubMed ID: 30593894
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The mitochondrial unfolded protein response: Signaling from the powerhouse.
    Qureshi MA; Haynes CM; Pellegrino MW
    J Biol Chem; 2017 Aug; 292(33):13500-13506. PubMed ID: 28687630
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extranuclear Sirtuins and Metabolic Stress.
    Elkhwanky MS; Hakkola J
    Antioxid Redox Signal; 2018 Mar; 28(8):662-676. PubMed ID: 28707980
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Folding the Mitochondrial UPR into the Integrated Stress Response.
    Anderson NS; Haynes CM
    Trends Cell Biol; 2020 Jun; 30(6):428-439. PubMed ID: 32413314
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The sirtuins, oxidative stress and aging: an emerging link.
    Merksamer PI; Liu Y; He W; Hirschey MD; Chen D; Verdin E
    Aging (Albany NY); 2013 Mar; 5(3):144-50. PubMed ID: 23474711
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson's disease.
    Liu L; Peritore C; Ginsberg J; Shih J; Arun S; Donmez G
    Behav Brain Res; 2015 Mar; 281():215-21. PubMed ID: 25541039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Advanced glycation end products receptor RAGE controls myocardial dysfunction and oxidative stress in high-fat fed mice by sustaining mitochondrial dynamics and autophagy-lysosome pathway.
    Yu Y; Wang L; Delguste F; Durand A; Guilbaud A; Rousselin C; Schmidt AM; Tessier F; Boulanger E; Neviere R
    Free Radic Biol Med; 2017 Nov; 112():397-410. PubMed ID: 28826719
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases.
    Chen S; Li Q; Shi H; Li F; Duan Y; Guo Q
    Biomed Pharmacother; 2024 Sep; 178():117084. PubMed ID: 39088967
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Loss of NAD-Dependent Protein Deacetylase Sirtuin-2 Alters Mitochondrial Protein Acetylation and Dysregulates Mitophagy.
    Liu G; Park SH; Imbesi M; Nathan WJ; Zou X; Zhu Y; Jiang H; Parisiadou L; Gius D
    Antioxid Redox Signal; 2017 May; 26(15):849-863. PubMed ID: 27460777
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sirtuin dysregulation in Parkinson's disease: Implications of acetylation and deacetylation processes.
    Dhiman S; Mannan A; Taneja A; Mohan M; Singh TG
    Life Sci; 2024 Apr; 342():122537. PubMed ID: 38428569
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging.
    Hill S; Van Remmen H
    Redox Biol; 2014; 2():936-44. PubMed ID: 25180170
    [TBL] [Abstract][Full Text] [Related]  

  • 55. BRG1 and BRM SWI/SNF ATPases redundantly maintain cardiomyocyte homeostasis by regulating cardiomyocyte mitophagy and mitochondrial dynamics in vivo.
    Bultman SJ; Holley DW; G de Ridder G; Pizzo SV; Sidorova TN; Murray KT; Jensen BC; Wang Z; Bevilacqua A; Chen X; Quintana MT; Tannu M; Rosson GB; Pandya K; Willis MS
    Cardiovasc Pathol; 2016; 25(3):258-269. PubMed ID: 27039070
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Does perturbation in the mitochondrial protein folding pave the way for neurodegeneration diseases?
    Ji T; Zhang X; Xin Z; Xu B; Jin Z; Wu J; Hu W; Yang Y
    Ageing Res Rev; 2020 Jan; 57():100997. PubMed ID: 31816444
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage.
    Tseng AH; Shieh SS; Wang DL
    Free Radic Biol Med; 2013 Oct; 63():222-34. PubMed ID: 23665396
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mitochondrial Post-translational Modifications and Metabolic Control: Sirtuins and Beyond.
    Kulkarni SS; Cantó C
    Curr Diabetes Rev; 2017; 13(4):338-351. PubMed ID: 26900136
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitochondria-Associated Membranes (MAMs): Overview and Its Role in Parkinson's Disease.
    Rodríguez-Arribas M; Yakhine-Diop SMS; Pedro JMB; Gómez-Suaga P; Gómez-Sánchez R; Martínez-Chacón G; Fuentes JM; González-Polo RA; Niso-Santano M
    Mol Neurobiol; 2017 Oct; 54(8):6287-6303. PubMed ID: 27714635
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impaired quality control of mitochondria: aging from a new perspective.
    Weber TA; Reichert AS
    Exp Gerontol; 2010 Aug; 45(7-8):503-11. PubMed ID: 20451598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.